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PREFACE
"e \

TuE mathematical problems which arise in dealing Wit
numerical date are abtractive and importani. Some, L@ow—
ledge regarding them is required by workers in mat} ditfer-
ent fields—astronomers, meteorologists, phy sicists‘s“\engineers,
naval architects, actuaries, biometrigians, agd statisticians,
as well as pure mathematicians; but uafi} recently there
has been very little instruction om, {hé¢ subject in the
mathematical departments of the BI‘lblSh universities. Of
late, however, there has been a gleat awakening of interest
in i6; and it is now ineluded i the syllabug for the Open
Competitive Examination for ‘aippointments in the Home and
Indian Civil Serviecs, t}}gi’&)lonial Service, ete.

The present voluigs, Tepresents courses of lectures given
at dilferent times dyring the years 1913-1923 by Professor
Whittaker to umlergraduate and graduate students in the
Uftthematl@al'La“.boratorv of the University of Edinburgh, and
may he rbgafded ag & manual of the teaching and practice
of the I:a.boratory, complete save for the subject of Deseriptive
Geom\vtry, for which a separate text-book is desirable. The
m@zmscnpt of the lectures has been prepared for publication by
Mr. Robivson, who has performed the whole of the work of
numerical verification and has contributed additional examples.

The exposition has been designed to malke cach chapter,
as far as possible, intelligible to those who have not mastered
the preceding chapters; so that any cne who Is interested in

gome special problem may, by the help of the Table of Contents,
v



fbhose used in Chapter X. of this book may be purchased)
*y With this modest apparatus nearly sll the computations herc-
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find and understand what is said about it withont being ohliced
to read from the beginning of the hoak.

One feature which perhaps calls for a word of explanation
is the prominence given to arithmeticul, as distinguished from
graphical, methods. When the Edinburgh Laboratory was
established in 1913, a trial was made, as f{ar as possible, of
every method which had been proposed for the solution of the
problems nnder consideration, and many of these wethoddhere
graphical. During the ten years which have elapsddhsince
then, the graphical methods have almost gll been a})aﬁdoﬁen.‘l, as
their inferiority has become evident, and at Llule"f}reszznt tine

-bhe work of the Tahoratory is almost exclusivéely arithmetical.

A rough sketch on squared paper is often‘Usekul, but {exeept in
Deseriptive Geometry) graphical work performed carefnlly with
instruments on a drawing-board is g{xﬂer&l‘ly less rapid and less
accurate than the arithmetical sdktition of the same problem.
The material equipment gséeﬁtial for a student’s mathe-
matical laboratory is ver‘}fvs;:in];](‘,. Each student should havo
a copy of Barlow’s ta.b’lje;'s: of mquares, ete.,, a copy of Crelle’s
“Caleulating TablegAand a seven-place table of logarithms.
Further, it is nep.ps@‘ary to provide a stock of computing paper
(.e. paper ruledNinto squares by rulings a2 quarter of an iuch
apart ; each §Quare is intended to hold two digits; the rulings
should Deweéry faint, so as not to catch the eye more than
is 11}3“{;\9;'}5517 to guide the alignment of the calculation), and
laghlys'a stock of computing forms for practical Fourier analysis

-

after described may be performed, although time and labour
may often be maved by the use of multiplying and adding
machines when these are availalle.

Attention may be drawn to the opportunities which the
subject presents to the research worker in Mathematics,
is an evident need for new and improved methods of dealing
with many of the problems discussed in the later chapters,

There
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The authors wish to acknowledge their indebtedness to
Mr. . J. Lidstone, 'L A, F.R.8.E,, whose unique knowledge
of actuarial litcrature has been of constant value to them,
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CHAPTER 1
INTERPOLATION WITH EQUAL INTERVALS OF TIE AR(‘U‘\EE"*IT\.

1. Introduction.—Mathematics is oecupied lax rfely mth the
idea of correspondence: eg. to every number @ ‘ohure corre-
sponds a value of 2, thas »s\\

1,2,84,35, ... \
Bl 49 16,25, . O

_ Ay

One of the two variables betwgenwhich correspondence
holds is called the argument and t,hx, ither is called the function
of that argument. w\

It a funetion ¥ of an argﬂmenb z is defined by an equation
y =7z}, where f(&) is anzalgchraical cxpression involving only
arithmetica)l OPbIrLLl{}]im\S'll(.h 2s squaring, dividing, ete., then by
performing these UperStions we can find accumtuly the value
of y, which corrtsponds to any value of » But if y=log,=
(say), it is th posmble to calculate y by performing simple
nlthmenl(;a{spﬂatlona on # {at any rate it is not possible to
mlcu]%\’s] aceurately by performing a finite number of such
operafions), and we are compelled to have recourse to a ‘abdle,
fVlﬁph gives the values of y corresponding to cartain selected
~\values of z; eg.

=
I

2

. loz = TS log .

70 0-845 098 74 0-869 232
71 0-851 258 75 0-875 061
72 0-857 339 | 7-6 0-880 814
73 0863323 | 77 0-886 491

The question then arises as to how we can find the values
of the funetion log # for values of the argument » which arc
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intermediate between the tabulated values, e.g. such a value as
z="7152. The answer to this guestion iz furnighed by the
theory of Imferpolafion, which in its most elementary aspect
may be deseribed as the science of “reading between the linog
of a mathematical table.”

In the further development of the theory of interpolation
it will be shown how to find the differential coefficient of a
function which is specified by a table, and also to find dhs

integral taken between any hounds of integration, A
2 AN
A kind of ivterpolation was nsed by Briggs,® but interpalatitn of
the kind hereafter explained, lased on the represeatationy offunctions
by polyuomials, was first introduced by James Gregory j'sm 4670

2. Difference Tables.—Suppose a functlg}n};"(u is given in
a table for the values a, e+4w, a+ 2 a-'i~3w, ... of its
argument . It is required to find the'walue of the function
when the argument has the value g%, where & is a fraction.

Before this problem can be solved’ by the method of inter-
polation, it is first necessary toform what are called the digfer-
ences of the tabular values. s The quantity

K ) - fla)

is denoted by Af{e)and is called the first difference of f{a).
The first differenceof fla+w) is flo+ 2w) - flo+w), which is
denoted by Ag{aw). Moreover, the quantity
Bf{a+w) - Affe)

is denatpd~'by A%(a) and is called the second difference of f{a),
Whi@jﬂié quantity '
A% (o +aw) — A2 (u)

\18 “denoted by A%(a) and is called the third difference of fle),
* and so on.

It is convenient to arrange the tabular values and their
differences for increasing valucs of the argument in what is
called a difference table, as follows ;

& Bu‘mq methed was, however, closely related to the modun ecntral-
difference formulae,  Cf his Arithunciion Logarithmics, ¢h, xiil,, and his
Trigonometrie Britannics, ch. 3. O Jowrnal of the Instifute of Avtueries,
14, pp. 1, 73, 84, 88; 15, . 212,

T Rigaud's Corresg}ondcnce of Scientifie Men of the 17th Contury, 2, p. 209
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Argaomend. Fondiry. A, A, Al
5 fla)

Afw)
4w Jee+w) A% (n)

Ma+w) M)
it 20 Jlet + 2ur) Al +w)

Af{a+ 2w) A3l + )
s+ B Jla+3w) A%{a + 2uw)

Af(n+3w) Asf{e+ 2w)
wrdw  fla+dw) Af{a - 3u) \

sud similarly for differences of order higher than the thiedy
The first entry f(e) is called the leading ferm, and the différences
of f{w), that is to say Af(a), A%{(u), . . . aro called theNtading
differences. Bvidently each difference in the tableds/the number
(with 4is proper alyebraic sign) obiained Dif 'I@‘ig\bé?'aat’ing the
number tmmediately abose and fo the left \faom the number
imanediately below and to the left, AN

The sum of ihe entries in any columa, sf}Tifferences is equal to the
differenice between the first and last ﬂltﬁi{:kf of the preceding columm
‘This affords a numerical check on thejaceurasy of the table. Thus in
the above fable we have ol

AZf(g + Bw) = A2fla) + ASHEY+ AM(a + ) + A%(s + Buw)

An ‘example of a differrnce talle is the following, which represents
the natural sines of zmglﬁ' from 25°40°07 to 25743 0" inclusive at
intervals of 20”. O
Argament, 3 mr A, Al AZ,
25740707 043203 47858 66963

@ Dl 8 73933 05476

90  Q%3%22 21791 73439 . —4073056
7 8 735892 32490 _ 822
40{'}’0-43330 95684 04859 - 40 73878
o\ 8 73851 58542 - 522
25°1M0"  0-43339 69535 63401 — 40 74700
N 8 73810 83842 — 820
NN 20" 0-43348 43346 47243 —~ 40 75520
A . 8 73770 08322 823
407 0-48357 17116 55565 - 40 76343
8 73729 31979 - 821
25°42' 0" 0-43365 00345 87544 — 4077164
8 73658 54815 - 8§21
20" 043374 64534 42359 — 40 77985
873647 76230 - 822
407 0-43383 38182 19189 — 40 78807

§ 73606 38023
25743707 0-43392 1178917212
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It will be seen 1lal In this easc the third differences ace praclicully
congtant when quantities beyond the fifteenth place are neglerted, any
depatture from comstancy in the last place being really due Lo the
negleel of she sixieenth place of decimals in the original entries. e
the fourth differences are zoro,

It will be found that in the case of proctically oll tubuiay
Junctions the differences of o certain ovder are all z2ero; or,
speak more acouralely, they are smaller than one wnil in the last
decimal place retained in the tables in question. This lact \es
at the basis of the method of interpolation, as we ghall nhhsee,

3. Symbolic Operators.—The formulae of the cfletilus of
difforences may be very simply represented by thewse of what
are called symbolic operutors. Of these we hay&already intro-
duced A, and we shall now consider another"@})erator denoted
by E. \

Leb w represent the interval between Witcessive values of the
argument of the function f{u), anddep E denote the operation
of incrcasing the argument by #, 30 that Ef(a)=flo+w); in
general we shall write E“ff(a)',—_fj‘(.-swxw), where % is an integer.
Now by definition we had A e+ @) = fla -+ w0+ 45) — fla + woo),
50 Af{a + 2w)=(E~1)/(u%ww). 1t is therefore evident thab
the operators E and Aglte connected by the relation A=E -1 or

O E=l+A

When symbdlis,operators obey the ordinary laws of Algebra
they may bey Separated from the symbols representing the
functions @ mwhich they refer and treated independently in
much théveame way as symbols of quantity. Now it may be
easily“stiown that the following relations are true for the
opétator A:

.'\.A,{o (@) +7(0) + fle) = = A8a) + AFD) + Afey+. .,
WV Alf{a) = kAf(u), where % is a constant factor,
N\ ATAMfa) = Am(0), where m, n are positive
Integers,
The corresponding identities for 1 are -
E{j{a) + /18) + fe) +. . +=Ef(n) + Fy(#) + Effe) +. .
Tt f(a) = kEf(a),
EnEr (o) =Emtnfla),

Thus in many respects the operators E and A hehave like

elgebraic symbols and may be combined like vhern,

2
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The following examples illustrate the use of these operators

Ew. 1.—To express the nth diffevences of a tabulated function in terms
of theo wiecessive entrics

Anfla) = (B — 17(a)

—TFwn_ —l;ﬁ:(’n_]} =8
= {]:“ npER—12 2-1-—]7]" I N 1]”*’}f((r.),
.z,
Qi fla 4 mae) — af{e 4w — )+ _c-m )_fnz o — e —, N

?l
8. —To axpress the function flo+aw) in terms of fu) Qé iha

setve differences of flo), when o is @ positive integer. ' \
i@ + mw) = B2 fla) 2‘,\ :

%A@, N
“1)a \\
Foa-eam) = o) + o) + EEZ D+ ef

4. The Differences of a Po]ynofmhl ——We, find without
difitsulty that the difference table for the function p=a? ig

as follows : Q}:‘:‘“
. . gfz.:{"‘ AR A% At
0
i '\\./ 6
S :
2 @78 12 0
3{;\'\'“’ o 19 s 6 .
N 37 6
N4 64 24 0
QO 61 6
<> 5 125 30
91
6 216

It will be seen that the third differcnces of this function are
rigorously constant and the fourth differences arc zero. This is
& particular case of a general property which we shall now
eatablish,
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Note that the table may be extended indefinite] v owhen we Luow the

- third differences to he constant, For hy defivition, when wi- add to an

eniry in a column of diffevences the corpesponding first diilorce, the
sun so formed gives the next entty in the eolmn, 14 fullow- that the
column of second differences can Le formed from the leading term 6 by
repeatedly adding the constant third diffevenve 65 the colinm of first
differences beiug formed from the Jeading terne 1 by adding e cnsession
the second differences 6, 12, 18,. .. The values of 3 are then ohiained
frow the loading term g by adding in snecession (lie five i ergnees
1,7,19, 87, 61, . . . \

. R

Congider the case when the tabulated functiond W is a
. .0\. L

polynomial of degree n, say, O

Sy = Azm+ Bar-14 Q24 | l—l@\rM

Then (&
@) =7(6 +) ~(a) Q
:A{(& +fw)" —~a" 4 B{(ﬂ + @_,)7;-\17 O N
Now AN
&
(@ +10)" = @ 4 papgn -1 + i%f\i)q,aac!-‘*- "Iyl Ll
8o that "

Affa) = Afnwon 14 ?a_(nz%]i} e N "

N

+B{n {i)wa“ 2 (1_-—1)-2(,??’ -2 wan=3 4
) !

+
\
ST
This is a{polynomial of degree (2~1) in @, and thersfore the

first : flerences of a polynonial Tepresent another polvnonial
of degwte less by one it

.. +_wﬂ—1}

NPy repeated application of thig result we see that

R 3 the 2nd differences Tepresent & polynomial of degree n—-2,

NS . .
\w\' W 2 Ard » » I 1 7 — 5,
» nth " N 0

te. the ath differences are constant. Ty follows, therefore, that

‘};; (n+ 1)tk differences of o polynomial of the nth degree are
all zerp.

. 5. The Differences of Zero.—A table of values of any power
of t;he natural numbers may be formed by simple addition when
the leading term and the leading differences are lmown, in



INTERPOLATION 7

precisely the same way as in forming the table of cubes (§ 4).
ihe differences of the leading term 07, which are generally used
in forming a table of a?, are known as the differences of zero.
They are of [requent oceurrence in the caleulus of differences.

In order o form a talle of reference of the differences of zero we
gpply the resull of § 3 (Ex. 1),

Anflay = flo +nw) — wfle +nw — ) - Inle — 1o +mw - 2u) —. . .
and write
AgP=(gdnp —ulr+o-11P +hin—Lfs+n-2)2—. ..
\ e s . . D))
1f wo now subsiitute in this equation partienlar values for &, p, and Jy WS

elitain the equations . \J
AP =l —aln — DYP £ Inin — 1){n — )7 —, | 421?08
AP 1= 2™ (g — 1P 4 Lin — 1) (0 — Q)2 —. . ENL

\"
ard (herefore AnQp = gAnT119-1 < NOY (1}
From the relation AP~ Vfu + o) — Anfla) + A M) we sce that
An=11971 = Ange L An=100-1 and equation (1),::»%@ T writton
Angp = n(Ar0p—1 4 AnIa8NI] {2)
We now conslruet o table of values of é:"{t)'z’.hy ihe repeated applica-
tion of this equation, remembering thal A%'=0, Al0I=1, and also

thet AP =0 for » =P, "'s‘
P A0N AWr ATZ. ol %07, Atpe,
11 N
g 1 2 A
501 6 O
¢ 1 14 &N\g6 24
5 1 30 N\ 150 240 120
6 1 629N 540 1560 1800 720
Tl 128~ 1808 8400 16300 15120
8 1 726¢ 5796 40834 126000 181520
% 1 {\N¥10 18150 186480 834120 1905120
10 1‘\\“’1022 B3OS0 818520 5103000 16435440

Fﬁi{'ﬂ equation (2) we see that the valne of o particular difference
.Q”ﬁ}’ 15 obtained by taking « times the sum of the two numbers of the
\I;ﬂ%fﬂdmg row whieh are situated in the same column and in the preced-
My column respectively. For example,
A37 = 3(62 + 540)
= 1806,
6. The Differences of x(x-1)(x-2)... (®-p+1—
. o
Among the polynomials of degree p there is one polynomal of
special interest in the theory of interpolation, namely,

wfz-1){#-2) . - . (w—p+1).
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This polynomial is denoted by [&]? and is called a factorial  if
we suppose the interval of the argmnent in the difference lunle
of {@]? to be unity, we have

laP=wlo-D{z-2) ... (a—p+1),
[#4+1]P=(e+ Dl -1} (-2} . .. {2-p+2),
Afnlp o+ 1P [a] .
=ala-1)(e-2)(a~3) ... (e~p+ ) {e+1)—{a-p+1}}

—plap-} Q
so that Alz]p=p[m]#-1* \t\
It fallows that A \3
AP _ [Pt [et1]e_[: [r]ﬁ NoNR
el (p—l} ! (&—\]}l

& result that may now be used to tabulate the mlue:. of [¢]?fp! as in the

following talble: \\,
o [x]%/21. E TE N \ Ex]‘f4' =P[5!
0
1 0
2 1 0’ 3
3 2 o o
4 & x; Y4 i 0
5 10 SN 10 5 1
8 15 74 @0 15 6
7 2,'1(‘,\ 35 35 21
8 %8 56 70 56
9 \ 6 84 126 126

7. The: Representatmn of a Polynomial by Factorials.—-
In § zt\ve found an expression for Af{z), the first difference
of \polynomlal of degree =, in a form which is less simple
JShedl the polynomial itself, Tt is wore convenient to carry out
e “the operation of differencing by the use of factorials, using the
«\”\}" relation of § 6:
Alzlp=plx]e-2. (1)
Let ¢x() denote a polynomial in » of degres k. We may
write gp(#) =7+ (2~ + )by 1{&}, where 7 is the remainder and
dp_a{®) the quoticnt when $uf#) is divided by (z-n+%), 80
¢i-1(7) 18 of degree (k—1). By a repeated application of this

* This is analogous to the formula of the differential caleulns di(g;”) =p?-1,
%
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transformation, we obtain an expression for a polynomial of the
ath degree in terms of factorials

¢?1(x) =a+ [m]ﬁbn - 1(&3)
=a+ ]+ [#]p,_o(®)
=a+ B[]+ [zl + [@ Py @)
=a+fa]+y[zF .+ [2]l2),
where o, B, y, . . . are constants and qﬁo(a) is a consbanl » (bay)
We thug obtain the result e\ Y
da(®)=a+ Ble]+y[zP+daP+. . cz]h ‘:3 (2
Eu—To represent the funetion y=ux?— 1267 + 4242 — SQ.'L\'—E: é\ and s
successive differences in the faclorial notation. m< O
Using detached cocfficients when dividing by o, 2, %2, . . ,

111-12448-30 | 9 \;
0+ 1—-11+31 |,

*

2 1 11431 ‘\\
0+ 2-18 ;“"

2|1- 9 138.7
0+ 3 3 x‘i.

1) - 8
we obtain the value of ¢ in Lge form
v= £z3*~\— 6al® + 137P + (] + 9.
The ruccessive dlffeXm w5 ave glven by
72 ”'{_\y = 4[x]® — 18[«]2 + 26[«}+ 1,
\ Ay — 12z — 36[x]+ 26,
A\ Aty =24[z] - 36,
\Q»* My = 24,
‘%w let @ be one of the tabulated values of the argument
soi,a polynomial of degree n, and let 2 be the interval between
fuceessive values of the argument. Consider the value
Saw+zw) of the polynomial corresponding to the value (@ +zw)
of the argument. Writing Az +ew) for ¢,(x) in (2) and
applying the operation denoted by equation (1} to both sides of
equalion (2), we find that
Af{o+me) =B+ 2y[#] + B3[P +. . .+ a1l (3
* Chrystal, Aigebra, 1, p- 108,
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Differencing this equation, we obtain

Aflo +ww) =2y + 2.30[x ] + Bde 2P +. . .+ a(n—[a]-2 (4)
Moreover,
Ao +wr) =238+ 2.3 4 a1+ 3458z +. . .

+a(n—1) (n-2)[w]*-3, (8}

and so on for differences of higher order. The values of the
coefficients o, 8, y, . . . are found hy putting 2=0 in eaclmof
the equations (2), (3), (4), . . . so that N o
o=Az), B=ARa), y=1A%), 3=1A%a), . . . v=Afidyn!.

Equation (2) may now b written

L ¥

2N
S D

Aosa) =/ vatyie)+ X5 Va2

&

{m 1, .
p \\Q',':I_ ______ J‘({_(.) .

This formula * enalies us to expyess the polynomiol Sl + 2
wn ferms of the fustorials o, w(z ~ Dy&z-1)(z-2), . . . whena
difference table of the function Ss\given,

This general formuls, may Lo'ehsi] ¥ verified for special values of =,

When & =0, it becomes {R)= Fln.

When =1, then

FEE) =) + LA
’\\"' =flw)+ {f{e +w) — flay}, which is an identity.
When o =2, .
R 200y = fla) + 2A8m) + A2fa)
N\ =fla}+ 2{fle + ) — fla)}

L)

N + /i 4+ 2u) — 20+ a0) + Aot
B5The Gregory Newton Formula of Interpolation,—The
“gg?numl Tormula of the last scetion may be applied to solve the
o\ problem of Interpolation.
<\; * Suppose that # 18 a funetion of an argument « and that the
values of y given in the fable are Hee), flataw), fladt 2,
fa+8w), | .. corresponding to the values @, atiw, o-- 2w,
@+3w, ... of w. Also suppose that these values of the funetion
are enfered in a differcnce table and that the differences of
order # are constant. We are not supposed to know the values
of ¥ which aorrespond to other values of %, such as w=a+ Luw.
* CL Fx. 4, § 8
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It i2 required 1o find an analytical expression for these inter-
mediate values of y.
The problem may be stated graphically as follows:
Draw the rvectangular axes Ouw, Oy, Let K L M, ¥ . ..
be points on the 4 axis having abscigsae a, a4, o+ 2w, @ + 3w,
. respeotively. At these points erect ordinates K4, LB,
M ND, .., equal respectively to the entries flu), fla+w),
S+ 2u), fa+3w), . .. Then the points 4, B, C, D,. .. sa
determined arve points on the graph of the funetion* The
problem of finding a “smooth ” curve to pass through the, otabs
A, 8 00, 0. has not a unique selution: in faet an Sefinite
nuvither of curves satisfying these conditions can bgiféiind. As
our alm I8 a practical ome, we naturally ahogs'é&the simplest
solution of our problem. y \/
emembering that the AL
slinplest functions are poly- A x'\’;ﬁx Cx py
nowmials, we inguire if it is ANV
possible to pass through the W
points 4, B, €, . . . a curve |~
which is the graph of a polys y
nomiol funetion of degree™m, ‘ ! : e
We Dave already ‘seen o
{§4) that for anypelnomial
of degree n the %&eren@es of order # are constant and for the
el of values‘;):f(fi), Aa+w), fle+2w), . . . ib bas been agsumed
that the di’ﬁﬁzfences of order n arc constant. This heing so,
&-pt'ﬂy!ldml;d of degree n exists which takes the values fla),
/(f&-f@;'ff(cwr?-w), . .. when the argument % hLas ihe valqes
it w, @+ 2, . . . in fact, by the last seebion, we can Write

L (&0%n an expression for the polynomial. It s

Y=70) +2Af{a) + ‘“—("“"2‘: Dpsfay+. . .
e ot g ()

7!

Fia, 1.

\

‘.:(f(u), .

* Wo do not. kuow anything about the portions of the graph intermediate
between thess peints, but we assume that the graph is & smno't)‘a oure 3 i.'or
our present purpose we can tuke tlis to mean that the fnoction has finite
differential cocilicients of all erders at cvery point.
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where @ i connected with « by the relation w=a+auw,
and where

Af{a) stands for f{e +w) — /),
A*fle) stands for f{o+ 2u0) — 2f{r +40) +.f(a),
and 80 on.

We shall now take the polynomial (1) to represent the fungtion
y also for values of the argument intermediate betwern >!e.e
fubulated values. The portions of the graph intefiddiatc
between the points 4, B, €,. . . may therefore be fitled in by

drawing tho curve N
y=fa+aw) R4
=Ho)+mAf{u) -ff(%%%f(u);f . (2)

and in order to compute the valuelefy corresponding to any
intermediate value of the argumeht: such as a4 L, we sinply
substitube the value =% in ehis-formula,* which is the analyti-
cal expression required. o™

The fundamental preblém of interpolation is thus solved,
The formula (1) isseften referved to as Newton's Jormule of
interpolation, althangh it was discovered by James Gregory in
16701 \\ -

The aPP,]-,iw;tiOn of the Gregory-Newton fermula is illustrated by the
follmriug,examplos :

* :@k}y books of Togurithmic tables, ete., contain a table of the binomial

co;%qimts requirad in the interpolation formula (1), ut intervals of 0-01 from
fo m=1.

worked outon p, 211 of Rigand. Collins was acenstomed to send on to Newton
the mathematical discoveries of Gregory (ef. Rigand, 2, P. 335).
Newton's publications on interpolation are contuined in:
V. The Methodns Differentialis published in 1711 but written before
October 1678,
2. A lefter written in 1656 to John Smith.
3. Lemma v, in Book iii, of the Prinsipia published in 1687, The above
formuta is Cage 1. :
4. Various reforences in the Commercium Bpistolivum of datos 167243 to 1676,

* These have been collected and edited by D. Q. Fraser in the Journed of the
Tastitule of Aetwaries, 61 {1918-19), pp. 77 and 211,
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Ex. LFrom the table given bolow to jfind the entry corresponding o
w=21

Argument, Eniry. A, AR A% AL

20 0-220314955248
701747247

22 0-230016702495 602297
702349544 - 1944

24 230719052039 600353 4
702949897 ~ 1940

96 0-231422001936 508413 3 )
708548310 — 1937 &\

28 0-232125550246 596476 'S
704144786 A7

30 0-232829605032 RO

Here =20, w2, Sl oy =121}, sa,ml,\f.; 4.
L) =F20) + 2Af20) + ‘(“_ 1’Azf(203+9’{L 1}(" m\aaﬂzoﬁ

=229314955248+.(701:4;24" {6022 A0 (1944
T y

=8209314955248 [707871 1
+ 3508736235 i+ 12;1
= 2206658288715 — 754066
Iy ": :3“
F(21)=0-229665753463. SN

L
-

Ei, 2—To find the co- or(l'inaﬁ{‘( af the sun on November 10, 1910, af
4% 30m G MT. (X s the sun’s{ t‘h; geoceniric co-ordinate measured on o line
passing through the true eq@fno,& af the date).

The Neutieal Almghge gives the following readings from which we
construet a dilTerenp{It}i’b’le :

191{!\”’ —-X. A, AT AN
Yov&mbﬂ 9-0 -6550897
Q — 63809
N 95 0-6787188 — 514
e N - 64323 4
Q ) 10-0 -6722865 —510
\/ — 64333 7
105 0-6658032 — 503
- 65336 2
11-0 0-6592606 - 501
— 65837
11-5 0-6526859

Wo mugt interpolate for 4® 30 from November [0-0. The interval is
12t Then 4® 30, as a fraction of the argument, gives z = 0-373.
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log = 9-5740313
log (z — 1j=9-T958800(),
where {n) indicates that 9-7958800 is the logarithm of & negative nruber
log 1=<D-6085700
log Lufo — 1)=9-0688813(n)
log (# — 2)=0-2108534 (n}
Lig da(z — 1) (x — 2) = 8-8026134.

Also £\
lug {— 64833)=4-8117961{n) log{ — 5031 = 2-70] 58S
log »=9-5740313 log Lefe — 1) = 5-08BRR 130
log {~64833z) = 4-3858274(n)  log Jefe — 1)( — 508) — AN 04493
=log (-~ 24312-4) < lofr 5801

fog 2= 03010300 N
log §x(z — 1)(z — 2)=8-8026134 ’\\
log fa(z — 1)(z — 2)(2) = 9-1036432&1dg 01,
Therefore — X=067228650 — 0-002431%.—1— 000000589,

and finally -X=04 698\62\1,\2.'

9. An Alternative Form\‘of the Gregory-Newton
Formula.—The Gregory-Newton formula may be writlen in
an alternative form Whichv,i,&;cmwcnient when an arithmometer *
isused. Rearranging Q.;H{e‘formula of the last section in the [orr:

flas0) = 110) o) ~H(1 -2 AN) - 3@ (. )
and agsuming tdie thiferenecs of order # to be constant, we may
replace theyGregory-Newton formula hy

Qo S+ z0) = fla) + 2y, (1)
where\: > Uy =8fa) - 41 - w)u,,
& . . .
'\..v’ ) 1
~ y=APf{at) "o l(p — &)Uy,
o\ . . .
\V u, = A"}, which is constant.

When computing a value of the [wnetion by this method, we
begin with the constant difference u, and caleulate in succession
the valves of ..y, %y g, . . ., %, finally substituting the value
of #y in equation (1), The following example will serve as sn
illustration of this method ;

* When an avithmemeter is not available Crelle's Culoy feebintg Tables will be
found useful for this purpose.
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Ln—To find f(f) when & = 24°-46980 5207 020, having given
& S8 . A A2 A%, A4
Q:f-4 216 198 561 343
168 272 307

245  (0-216 366 833 650 Y45 715
169 018 023 768

24-6 0218 535 851 679 746 483 )
160 764 505 773

94-7  0-216 705 616 177 747 256 4
170 511 761 777

24-8  0-218 876 127 938 748 033 5
171 259 794 w2 O\

249 0-217 047 387 732 748 815 N\ .
172 008 600 W

25-0 0217 219 206 341 N

Here  w=0-1, 22474, 2= 0-698 005 207 02, ,{A"

Hence 1¢3—L\3f(n) - 13- x)&“j\cr) - 168 08Y6 % 5 '»\\\'
= .}' 3

= A2f{m) — 1"2 — Yy =T45 715 — 0484 O )&Zﬁd 1

=745 383 0
1y = Afla) — 1*1 - xjuy =168 272 307 - ﬁ\wo 807 4 x 745 383
=168 149 7561, AN
Then \ \/
Fiee + ) = flee) + ey A

=0-216 198 61 343 + O G‘)\BfQOJ 207 02 x 0:000 168 159 756
=0-216 198 56t 343 O

) §

+ 117 376 383, ™
or  f()= 0216 215 937 728
10. The Binomiﬂi\ghéorem.—]ﬂy use of the operator E, we
ean wrife the (i reginy-Newton interpolation formula in the form

Etf(&’r)u TvaA+ __(_. )Az o *(({)

When thu&rw'r\ltten the formnla is seen to be the same as that
obtained\by” “expanding (L+A)* by the Binomial Theorem in
ascendiny powers of A and theu operating on Au) with the
tagmﬁ of the series so formed, <.,

\V. E2f(a) = (14 AYA(a).

The Binomial Theorem was made known (in compspondence)
six years after the Gregory-Newton formula ; in fact, Newton
geems bo have dlscm'ere‘d the Binomial Theorem by forming the
expansions of (1 +=)» directly for integral values of n, and then
writing down the powers of z in these cxpansions, In the
case of the coefficient of &2 he would have:



16 THE CALCULUS OF OBSERVATIONS

FEaponent.- Coefficlent of o2, A, Af,
0
1] 0
1
2 1 1
2
3 3 1
3
4 6 IR\
4 O
5 10 N\
whence evidently the coefficient is of the qecond’ demee i n
Since it vanishes when #=0 and also when n=1, it must
sontain the factors # and (n-1); and\f{mec the coefﬁuent lis

the value 1 when n=9, 1t is wn ~ 1)

We may remark that if we form Kdg}ﬁ'erence takhle for (1 +2)® thus

drgument. Fatry. o AZ A3,
1} 1 A\
):’. " «
1 {1+ N 22
&N #{1 + ) «?
2 (L3wp w21 )
S ol 4z 231 4-a)
3 NI + 258 (1 R
then on subi ﬁtmg the values f{0)=1, Af{0)=2 . . . in the Aregary.
Newton fo \h
'm\“: J) =f(0) + nAf0) + inin — DAZROY 4, | .
wa Ol)’ta\‘r{ (1-1-::,)“—1—}-?13:—;—??( 1) a2 4,

whw I# the Tinowial gEpataion,

Examrres ox CHArrER I
1. Form the difference talles corresponding to the following entries ;

@  26°10'0" 0691 380 Son Tos 01
10° 4134 054 052 28

20" 487 246 020 72

30" 540 424 000 42

40" 592 618 010 47

i ?0” 646 798 051 97

26° 110" 9-691 699 974 108 01

10” 753 116 188 70

gg” 806 314 295 11

859 478 428 36
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x, sin

iy 28 40700 - 0479 713118 250 248
10" Y55 651 470 188

20" 798 188 582 452

30" 840 724 526 998

40" B83 258 263 705

50" 925 793 072 474

28" 41" 00" 968 325 653 205

10" 0-480 010 857 105 798

2 If y=22" —u®+ 30 + 1, ealoulate the values of # corresponding to

w=0,1, 2, 3,4, 5, and form the table of differences. Prove theoretically (. *

that the second difference is 122+ 10 and verify this numerically.

3. Find the function whose fimst difforence iz the function . i:’
073+ B + yo + 8. N
4, Find the suceessive differcnces of ™

{&) 1fz, the interval DLeing unity,
(¢} cos ms, the inferval being w. O
b, Express f(z) = 34 + 22 +- 2+ 1 in the form ";,\ '
s — 1) (5 — 2) + Bafy — 1) hYa ¥ 8
by comparing eoeffivients.  Calenlate the valueg 6{"3?(:5} forg=0,1,2,3,4,5,
ele, and form a difference table.  Verify $he equation

Jir) = F(0} + 2Af(0) + ;-"-'(xa_,_ -1--)4?2};&3);- He -1 Dfﬁi.ﬁ&f(oy

6. Compnte the third differercedof f51) by the formula of 83, Ex 1,
from the {ollowing table of eptafes :
x 51 %N 762 53 54
£ 13265TN 140608 148877 157484
verifying the resulb iy means of a difference table.
7. Given the ,1{13],& of values
-3 -2 -1 0 1
{&w‘ 16 7 4 1 -8
find by m:éa.ns of the Gregory-Nowton formula an expression for y as a
fonctiotvef z.
#S \onstruct a difference {able having given
y log 5-980 = 0-776 701 184 0
log 5981 = 0776 773 802 4
log 5982 = (776 846 408 7
log 5983 = (-776 919002 8
log 5984 = (-776 991 584 ©

and determine log 5-9805. .
0. Let », ¢, +, s be successive emtries in a fable corrcsponding to

equidistant arguments. ]
Show that when third differences are talken into account the entry

(p3ll) 2

N\
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sorresponding te the argnment half-way between the arguments of g
and r is

grr, (hn)—(p+s)
a 16

10. Let p, g, r, & be snccessive entries {corresponding to equidisiant
arguments) in a table. It is required to interpose 3 entries {vorre-
sponding to equidistant argiunents) between g aud r, using third differ-
onces.  Bliow that this may be done as follows :

Between 4 and r interpose 3 arithmetical nieans A, B, and\ (! alse
between 3¢ — 2p — 5 and 3r—2s —p interpose 3 meany AVNES and O
Then the 3 terms required are A +yFA, B LR, O gt

AN ﬁJe Morgan.)

11, Deterraine log 6:0403, having given . \J

log 6:040 = 0-7810269386( ™
log 6-041 =0-781108836]
log 6:042 = 0-781180%7205

log 6:043 = 0-781252%942

log 6.044 = 0-781 34557

12. Using the wethod of §90, ﬁg(&h 2474698005207, having given

(De Morgan.)

the values

8. ¢ ". " ain A,
24-25 o\ o 041071885261 4
24-50 0N 0-414693242656
2475 o&8° 0-41865973%537
25-008% 422618261741
25595 0-426568739902
L2550 0-430511006808
13, Gi\’@hé’ values
p ) Sl
A\ 0 858313740095
PN\ 1 869645772308
N 2 880-075826766
N\M 3 892-303904583
N/ 4 903-630006875

caleulate f1-5) by the Gregory-Newton formula,
14, The values of a function corresponding to the values 1, 2, 2, 4, 5
of the argument are 0-198669, 0-2377092, 0-276355, 0-314566,
0-352274 respectively. Culeulate the vahies of the huuction when the
argument has the values 1-25 ang 1-75 respectively,
15, Using the difference {able given iu § 2 find the values of
sin. 25° 407 10" and sin 25° 40' Bn”, Also verify the answers
sin 25° 407 50" = 0.423 353 2681 493 418,
8in 257 41" 10" = 0-433 440 644 614 711,
Bin 25 417 307 — 0-453 628 023 860 8986,
sin 25 417 50" = 0433 615 393 31 149,
obtained by taking s Inmerically less than unity in the formula of g8
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18. Caloulate log tan 24° 0" 5", given the values
log tan 24° 0" 0" = 9-648 583 137 400 95
log tan 24" 0" 20" = 0-648 696 457 723 08
Iog tam 24° 0740" = 9-648 800 758 267 66
Tog fan 247 1" 0" =9-648 923 039 045 83
log fan 24° 1" 20" = 9-640 026 200 068 75
log tan 24°1' 40" = 4.649 149 541 347 57.
o
- - . _ed
17. The following table gives the values of I{:c):f ™% ds: . <\
v 2\
) F{ESR ) J\<>v§
0-00 0-886 226 92 O
0-01 0:876 227 24 PR
0-02 0-866 229 57 ‘,,\\\3
0-03 0-858 235 90 ‘&%
0-04 -B48 248 23 \\/
0-05 0-836 268 53 N\

Calealate It3) for o=
use of the formula

0-025

3
Iy~ Imy=z-" +

o\
O
{.\{/
Q N/
S

by interpolation and x,n};fy your result by
‘€%

P

3 52l



CHAPTER 11
N
INTERPOLATION WITH UNEQUAL INTERVALS OF TIIE ARGUMENT

¢ )
11, Divided Differences.—W¢ have so far dbbtm‘:éli that tiw
values of the argument proceed by equal stqp& Fut with daia
derived from obscrvation it Is not always Poﬁmble to compleie o
difference table in this way. ¥or examgle, when astronomicel
observations are disturbed by cloudéN\there are gaps in tie
records. N
Counsider the ease in which, tﬁe‘values of the argnment, for
which the function is knowngare’ unequally spaced, and suppese
that the valucs of flz} ake “known for m=a, =, B=1,
. ©=a,, where the\ihtervals a, —a, ay—a, d5—ag, . - .
@y~ @,y need not pesequal. In place of ordinary differences
We Low introduc&wfﬁxt are known as divided differences™ Lot
us fornt in suceé&blon the quantities
f(rih “’“X}(a ) czz M—f(a ap),” HE )"f(ﬂ'_z) — flog, )
"1~ 2 3~ g v
and 30\01‘1 These arc called d@mdsd differences of the first order.
’\Im*eover let us form
, £ 22 : &, L
\Zﬂ(_ag i_ﬁ( L 0) Sy, ay, ag), ﬂag’% al(a - &) = flag, ttg, 7)-
These are called divided differences of the second order. Also leb

(Mg, oo, ) — flag, 0y, a0l /(g — ag) = flag, iz, 3, C)-
This is called a divided difference of the third order. The
divided differences of higher orders are [ormed in the same w ay,
80 that the order of a divided differcnce is less by unity than the
number of arguments required for its definition.

* Dividod ditferences might tuirly be aseribed to Newton, Lemma v, The
term was used first by Do Morgen, DOF. and Tnt. Cule, {1842}, p. 50, and after-
wards by Oppermann, Journ. Fast, Act, 15 (1869}, p. 145, Ampu‘e, Ann. de
Gergonne, 26 (15836), P 328, used the name inberpolatory Funclions,

20

k4
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Divided differences may be expressed more symmetrically
as follows:

Sy, au)= (a.f!)_ 4 )

-y a - ay

etz s, 03

__ b (Aw) | S) ) +;{.ﬂﬁﬁ_.+M}

1y = (g Lty — crl ay - apyf " ag—ag\w —ay " - ey I\
- At " FIC Sas) p :\“ \*
(f’"o - ’-"1) (”o — g} () — o} (7 — ) —a) ey~ f"'ol
Jlag 0,000,005 - :n}"
T s N Ao o
(f"’u — ) g~ az) (g —g) {2y~ @) (17 ~ %)1‘0"‘1 - 5"‘3)
S {5) Jlag)

" ) (02~ @) (0 = ) " (g = ) g ) (75— )
In general, as may easily be shown B farn,duczwn a divided
difference of the pth ovder isa .symmezmc funct@on of tis arguments
and s w5 fact the sum of (p+ 1) fum&mm aof the form

Sl

difference-product of a, wn;h ao, W, e, . .oy 1y Dppyy - v ap

Ii is evident from {his g 'te\ue:nt that when the arguments required
to form a particular divi e&d’i’ﬂelenre are arranged in a different order,
the value of the d1v1tlm‘l d erence remaing unchanged, g,

Flatn, ity _ 1 U’n\-s‘: vy by ) =flthg, @y, @y - o s g 1 fu)

Divided d{ﬁ’hrenceh are arranged in a #bie of divided differ-
€nees a8 fdlLqu

P ?‘gi:-m{:fz }.. Fondry.

Ko Hetg)
' Heto, 2y}
& Say) S, 2y, 69)
Aapa) Aty 5, )
g ez Sy, @, ag)
Jlotg, as) Sy, @a, a5, ag)
g Jes) Hag, ag, )
S, ag) Heg, a3, ay, a5)

&y Hety) g, @y, )
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The following may serve as an exatple of a table of divided
differences ;

o) Al
0 132651
s113
2 148857 158
8587 1
3 147464 162
8911 1 O\
4 166375 167 A L
9579 1\
b 195112 173 'S Ml
10444 A
g 218000 N

"' »

In this example the differences of the t-hird/af&e\:é arc constant. e
shall now sce under what eirewmstances a edlitein. of eomstant divided
differences s obtained. N

:.\\.,

12. Theorems on Divided Differénces.

L If « funstion flz) 4s n%mie;{'iéaﬂy equal o the sum of foo
Junctions g(@), hz), for o 50/ values of the argument x, tien
any divided difference of A& formed from those values is eguul fo
the sum of the corresponding divided differences of g{w) and hiz).

For example, Q
) ~ o) _fglon) ~ gl + () — o)y
Sy, Cfu) < a— dy —~ ity

P\ 0 =glay, a) + by, ay),
and gimilarly for differences of higher order.
\ﬁ A divided difference of efl@), where ¢ is a constant Jactor,
N 83 times the corresponding divided difference of flm).

A v' Tor example, the divided difference of the first order of ¢() is
a\%
) ) = oflar) _ Ay - f(og)

g — ¢, ay—ay o, o).
L The divided ifferences of order n of & are constant
{where n is o positive wnteger).
Let Sy =am,
Then Ttg, ) = (ag — ") — )

=gy -1 g R-2 -
DR AT S e
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a homogencous funetion of ay, o, of degree (n —1). Moreover,
A, 24, 25)
- [{;0““1 R N TR 2 el Bl L5 Sl i s sEURUES o Wil
thy — Oy
= (g™ T = gt (g — e5g) + @y ("2 — ag" ) ey — g} +.
+ oty g — ag)f{tty — )

={a b w4 L L+ agY)
3 4 -3
+a{a 3 apn . L L+ L L

AN

which is a homogeneous function of a,, g, &, of degree (n -2}
In gemeral f(ay, @), ay, . . ., @) I8 a homogeneous function of
gy g, gy « « + 4y Of degree (n—p). Taking p=n, we, see “that
Sy @y, ag, . . ., &,) is a constant. A

Corollary: The divided differences of order (n + L0Gf&™ are zero.

IV, The divided diflerences of order n of apsé]nomwl of the
nth degree are constant, O

This theorem follows immediately from® tlieorems I, II, and
TII., since the divided difference of order w of cach of the terms
Whose degree is less than # is zero. O\

V. A divided difference of m‘(fe‘r v moy be expressed as the
quotient of two deforminants gadhdof order v + 1.

Consider the divided différenice of the third order,

8 J
\\‘.: f (“u)

Hag. ay, ag,05) = (P"o — ) (g - ) (T — )

E la,) {difference-product of a,, e5, ag)

x'\ difference-product of a, uy, 6, o,
A&
Now adilference-product may be expressed as a determinant

of the ki;rid known as Vandermonde’s, thus

ONids . 2 42 a2
N\ J(difference-product of ay, @y, o)) = |a,® @t ey
y fly 428

I 1 1

f 2 F 2

a et oy
Therefore ) I; af a’f s
f(a_ by, . (5 ) =%- P L N

o thpr Hay Ly 3 a 3 3

ty gl ey} oy

al alf ot o

Mg Oy Gy Ul

i1 1 1 1

N
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S0 ay, ay, a5) =
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fo) Ao Aa) Aa)
' A eyt ag?
22 oy g g
N T N
bad ot af o
Poagtoa e
dy oy fty tty
i 1 1 1

and so in general for differences of order higher than thabbird.

13. Newton’s

Formula for Unequal Intervals.. Ahet flu)

be a function whose divided differences of (say) om d&r 2 vunish

or are negligible:

; and suppose its values for X 4 awumpnts

Gy @, (g, @3 aT¢ laown go that the table of d’l\’]dtd diffsrences

15 a8 follows -

Argument,  Entry,
tho Jttg)
Sy Se)
fty Jaes)

tty Jtts)

We may obtat
argument « m\‘bh(

R
~
Ao a) K
N itg, oy, o)
Ha, "fz»).’; - S, @y, ag, ag)
T Say, ay, ay)
Jf@z; ftg) Aty g, a3, )

I\Lthe value of the function for any other
followi Ang way. Beginning with the constant

dlﬂerence whm‘n 18 of order 3, we have

:U\ A, oy, a4, a)=flay, ay, a,, ttg). (1
By, Qeﬁhltmn of the divided difference of order 2,
s\\ S @, ar)=flag, ay, ag)+(n - oa)f(v, @y, ay, ),
waand therefore
'"\} :\ T, @y, 0))=fla,, @y, @)+ (v = a,)f (g, ay, g, g). (2)
N\ Again by definition, _
T, ag)=flag, o)+ (u—a D, g, ay), ()

and substituting in this equation the value of S, ag, ay) from (2),

S, ag) = flag, o) +
Also by definition

or - flu)=Ffag) +(

+ (-

Mg ety 05) + (u ) (v — ag)flarg, 0y, 5, 03).

Jw)=Fag) + (u - e} (az, ay), (4)

+ (1~ ) (w0~ aﬁ (u ~ ag) f{ay, o, a, ag). ()

% = o) (e, @) + (4 - ay) (u ~ a)Aay, ay, )



INTERPOLATION 25

From the equations (1}, (2), (3), (4) the quantities S, ag,aq,,a,),
A, ag ), fu, a,), A) arc now known and may be inserted -
in the table of divided differences thus:*

Argument.  Futry.

u J}

S, ag)
thy e S, ay, @)

Ao, ¢4) S, ag, @y, 05)
oy Jlay) Flag, ay, o)

Ay, @) Hetg, @y, 00y, a33)

fty f(a‘a’_) Jlay, a,, ag) (D)

Sy a3) 4 “\
ag  flag) ~

Formula. (5) may evidently he generalised to ,e):gpres:s a
function whose divided differcnces of order ( + 1) are:\neg]igiblc
or zero, in the form y

. A
S =fag) + (u — aghflay, @) + (1 - ag) (1 — a,)f] G‘m by, €tg)
(o= ) (- a13) (1= 1) (g, a3, )+ .
FU—ag) (u—ry) . (w-a Gflag, @y, ay). (6)
This formula was discovered by Newton.t
The first term on the right-hand sj{fe: of ihis eqnation represents the
polynomial of zere degree, whieh Jias the value Flag) at w=a, The
first twn terms together representsthe polynonial of degree 1, which has
the values flag) and fie,) at gy Aud a, regpectively, and so on.
The remainder term which juust be added to the right-hand side of
the equation in order to (ﬁsji}in sirigt acenracy s in fact
{1 — g} {209 o {u = aalfl, g @y 4 B
Bt this terin vanis’hf!s’xif the divided differences of order n are rigorounsly
constant. (N

Ex.—ﬁ*rb@wﬁ;tabﬂc given below to find the entry corresponding to 37608,
C\ ;
2 8 E

\ 2, A,
ey =0 ‘3089423
O - 500
O a=25069 -3983169 —199
- 1499
thy=5-0154 ‘3984408 - 189
— 2498
ag=T-5270 +3978138

* Tn practice the value of (%) Is usually found by forming the successive
divided differences in this way, us in the worked-out sxample below.
t Prineipicc (1687), Book iil, Lemma v, Case i, Cf. Cauchy, Fuvres, (1) G,

p. 409, (p311) 20

N\
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Forming the successive divided differcuces of flu), where = 2-7608,
we find
Jlo, eeg, 6y =Flag, @y, o) = — 199,
Ju, ag)= — 500 + 12538 x (— 109 = — 749596,
fu)=-3989423 4 37608 x { — 749-526),
The calculated valie iz therefore 0-3986604.

14. The Gregory-Newton Formula as a Special Oase of Newion'y
Formuls.— The Gregory-Newton formula may Le regarded as the special
case of the formula of the last section when the intervals of the az gument
are cqual. \

Yor in Newton’s formula for unequal intervals upPpost ih«ut \u, mt
y==a, ty—uw, ay=a+Zw, ., ., zr_choua

By construcling a Lable of divided dlfﬂ,reuceq, we e d,ha.t

Slg ay) = Af\“} Floyy o) ——zﬁf"fhl- ),

. Jf(a.u, ey, (f2)_ﬁ’% Zf'“ﬂ‘)
In the same way we find \ 4
Slag, a4, az, fsg, — Aff;)

and so on, o

If we now replace « Ly & + x'w the formula for unequal intervals of
the argument becoues

Fa+ ) = fa) +rAfra)+“f°"“ g + DO g
which is the (:regpry\"qew ton formula.

15. The, Prﬁctlca,l Application of Newton’s Formula.—
In la,boratorv computation from Newton’s formula, we procead
by & weftod which is really identical with that given ahove
(Ex! ?IS) Rearranging the formula of § 13, we see that

i(va =/g) + (2 ~ w) [ Aay, a,)

(""5 = )80 @y, ) + (1 - a,) (o, @y, g, a3y +. . ]

AN
~\D ThlS equation may be wristen in the form

3

) =Rao) + (u - gy, (1)

where r;l f(a,n, a1)+(u al)»vg,

lfaj, =7th d_mded dlﬁ'erenw + {1 — o, )0,04,

. =

1n—f(cao, @1 - o - @), & constant.
The #'s ars computed in the following order: »,_,, B g . v
¥y The value of #{u) is then obtained from equation (1).
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Fr—To find the fanction corresponding to the argument 6-417 an
the following difference table:

Avgument. Entry,
tg= 5 150
121
= 7 3492 24
265 1
ty=11 1452 32
457 1
ny=13 2366 16
017 \)
=21 8702 O

B=6417, wy=1, =24 4+(6417 - 11)1=10-417, ;S\
0y =121 x(6-417 - 7)19-417 =109-679889, /AN *
L ¥
< J6-417) =150 +(6-417 ~ BY10S-6TI858, \(\
=305-416402713. v

16. Divided Differences with Repeatek&%ﬁments.—'l‘he
original definition of divided differences irebupposes that the
arguments concerned are all diflfereht? If, however, the
quantity f{a,, ¢, + <) tends to a deﬁqifé'limib as ¢ tends to zero,
we denote this limit by fla, agyhnd similarly for divided
differences of higher order. N\

Now suppose that in § 137k, Since the differences of order
3 are supposed constant, &8 kee that f{u,, @, @, ,) is equal te
Ay, ag, ey, 1), and the}s}naining differences f{mg, o, @), f{t, @)
may then be caleula.jiéd just as in the general case when u and €y
were supposed diffetent, We may now form another set of
differences b){{%@in taking w=a, Repeating this wethod, we
oblain thq_\‘{éllbwing table of divided differences:

Argumend, \ N KN
) V)

N e ) Hetg, g, g, o}
\“o' J(eo) Sttg, 4y, erg)

S, ) Stter e, ty, ;)
@ S Hag 2y @)

Seeg, ;) Seg, g, 0g, 005)
&y Jley) e, 0y, ) .

Hay, ay) g @y, 1y, 6ig)
Ay Jas) Aty @y, 23)

Sty @)

a3 Seg}
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In terms of these divided differences with repeated arguinents
the formula of Newton becomes

£(0) = Flag) + (= )l ag) + (0 — )l s )
+ (1 — o) 0y, @y, ttg, @) . ..
This formula will be used later to obtain an expression lor
the derivatives of a function in terms of its divided differences.®

Ba—ven the wulues b 11 27 a4 42

i i "_h iy
ls) 23 899 17315 35606 68510 O L@

@n terms of powers of (x— 3). R 4 M)\*
Construsting a table of divided differenees and extcndiug\ﬁ tf inelade
repenled arguments for @ = 3, we obtain A 7
<™
2 FiEoR LD
42 68510 A\ N
; O
: 4113 N/
34 35600 % 100
2613 .',\\“ 1
a7 17315 AN 69
1026/ 1
11 B899 Y N\ 40
_ a0% 146 1
5 23 8N 16
‘“:; g 18 1
3 =43 8
A 9 1
B (I3 6
N 2
N -13

Applyisly Newton’s formula for repeated arguments, the required
valu(,; ,i’s;f(:cj = —13+20—53)+ 6~ 3% 4 (» — 383

\“137 Lagrange’s Formula of Imterpolation—Let f(z) be
e polynomial of degree » which for values By, Uy, o, . . ., Oy
A of th‘e argument « has the values flay), flay), . . . , Aa.) re-
\\ *  speetively. By the definition of divided differences, we have

Ay oqy by, . . ., a,, 2)

= _ f("n) . . Sto)

(= ag)o—m) (0= an) " (@ ) - ay) - (g i)
g My

(0 — @)ty — ) ... O
. fe)

{n — @) (a0~ atg) ..+ (0 — 1)
* § 37,
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nce /(%) is a polynomial of degree =, its divided differences of
der {r + 1} are zero, i.e.

Sy, 3 a5y - L L ay, %) =0,
ranging the factors of the denominators in the above
etions so that the first factor in each denowinator is of the
m (% - ¢,), we obtain
fie) i

— )@ —y) ... (B —y)

_ Hep)
(@ = ag) (g — aq) (g — @5) . . (g~ t)
Sl O

+ (& — ) {ay —ag) .

e (- (L?J '\\

- J(e) \
(@ = ad{an = ag) . - . (0 — 2 )
ich is Lagrange’s formula in a form suitable fgf:ptﬂ}r;ptzbation.*
Another way of writing this formula is ofitdined by inulti-
ing both sides of equation (A} hy ¢ \\
(x ~ ap){e — a){z —a,) . . "f:(}j’ - ),
en we obtain NY

(4)

) (z-a)(= —fg) . \."‘“. (%‘ '— ) “
T =yl - (=)
(z—og)zs @ -y
{atg— g (a1 =) . . . (o -2,

AKX

)f {n7)

- .

DG At R o) e @

- o) (et ~ 10} . . . (i, — &,

It is impnrtal}.?n to note that when a set of exporhinental data obey a
which ganbe expressed algelraically as a polynomial of degree n,
n nof/lésvihan (a4 1) observations are required in order to construet
polptmnial,  If only n valnes were used, the resulting polynomial
Ud be of degree (a— 1) Before applying the Lagrange formula it is
refore necessary to ascertain the order of the divided differences whieh
of constant value and thns find the proper valne for n.

14 17 31 371 to ecalewlabe the value

y x
K. 1.——Given the 'm.hmf(x) 68-7 G40 44-0 39

(1} covresponding to w= 27,

* This formula, generally known as Lagrange’s, was discovered by E. Waring,
. Trans, 69 (1779), p. 59.
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Applying lorinula (A), we obiain

f27) o
(27— 141{27 — 17} 127 = 31y (27 — 35)
68-7
CRT-10 (14— 17) (14 =31y (14 ~ 35)
N 64-0
@T-1T)(UT -1 (1T~ 3D (T~ 25) A
440
(27 —31)(31 ~ 14)(31 = 17 (31 ~ 3.4{\
n 391 \../
(27 ~35)(35 — 14 (35 — 17 (« 31)
@7 _ 687 640 420 @1
o 4166~ " 13033 T TRG0 T ss‘ﬂ&\ 12096’
~ A7) =49-317 ({z@pmx
The required value is 49-3, }\‘

Ei 2.—Gven the data ]22 12?’ fo form the eubic function of i,

s 0’1
0, 2%
Applying formnta (R), 8 have

fw—1; (&—)jff’mﬁj .;,.‘.:.—2)(:::-—5)3 9(J_l)r,_o)

©-DOLO-5" " Ni-2/d "5y "32 12 75
T(.L—l (\AQ .

11
ou— 5-2)

fe)=

=} 62 43,
‘\‘

“\13\ An alternative proof of Lagrange’s formula by the
,{ée/ of determinants is the following ;
.~\ Let P, denote a pulynomial of degree =, and put
AN

~\J Po=A+Be+Cuy. | LI

N/ —f(e).
Subsmtuhng n snecession the values Qg by, . . o, &, Tor @, we
obtain

Jleg) = A + By +Ca 24 . 4 Loge,
(rtl)— A+Ba 4O rrl oot Ly,

f(a J=A 4 Raﬂ + bw,,2 +. . .+Lam
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Eliriinating A, B, C,
ally we have

0=1T, Au,)
1 1
By
)
i a7l T
[B" o,

31

. from these equations determinant-

Seg) Slag) - ()]
1 1 1
y iy tt,,
alt g’ a?
. . .1
a," ™ [ '

<O

Expanding this determinant accmdmg to the cloments off t‘he

first row, wa see that

Pail 1 L1 ] =f(ay)
@y m o
LS AT
e N N |
“fel 11 1
T A .t
B eyt Lt
pat s g g

The deferminant
a8 dilference-produgts)
ence-prodact of e, .

dlﬂerence-producﬁ of @, a, ay . .
A o o

write NG
A\
Lol T (=oq1 11
& ﬂ), . O My &y Ly
! x“ . .
Yn' LS " @t gt Lyt

X
s

o

Y

F 4
n\
Yot ¥ 4
: &
11 1 \‘..\\
® oty . iy \
e, .. a \
. - (N
ptE (E!’& it ﬂ| '\:
1 . H A
G
-~ N’
T &
SRRT TS ¢ b S BN
N3
SN £y B )
A »2 [ 2
&3 E A .
2
- . @t L Ry

(1)

s\n&“ ths equation may be represented

The cocfficient of f{a,) is the differ-
- @, the cocfficient of f{z,) is the

., f,, and so on.

.1

|= + l 11 1 =
¥, O o -t
P ul 1 u
‘0’-2‘" [ AL

We may

t.e. the coefficient of T, is equal to the difference-product of

P,
product of a,, @, 05 . . o,
of ay, &, @, . . .

7 SN« -

result :

it is alse equal to minus the difference-

tt,, 0r to plus the difference-product
If we now divide through-

ft,, and g0 on.
out by the eocfficient of 1%, in eguation (1),

we ohtaln the

N
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E-a)(e—ad(®—a) ... (#-a,)
B — oy} {6y — @} (06 — tta} . . . {gp—a,

P, =f(050}(

= ) (g ~ A} (g — ) L (g — )

+f(a,1)( (“’}}__ ag)(® - o) (@ __a'::) G tn)

.

E-a@—a) ... (@—u,_q) 2\
+/{e) ,
) (= o) {an —ag) . . (tty— ty_1) A
ne
which is the formula required. o\ N

There is an infiuite number of funetions of #, eagh™of which has the
values fegd, fim), « . ., flow) at B Oy o . o 0 Edpectively, In the
practical applications of mathematies, however, ‘m)so}fsid er only funciions,
such that if wy, 6y, . . o, o, are sufliciently clgseNtégethier, any one of il
fanctions may be reprosented with toleralle accuracy by the palyuonial
Py, for e range of values included ¥owween ag, . ., @, The
formula may thns be used for interpolafio.

% 3

19. The Remainder Term' in Lagrange’s Formula
of Interpolation.* Letg}f(’:’v) be & funetion of the real
variable # defined in @q"fiﬁtcrval to which Dbelong the values
By By, + o o Tn, BN poéécssing in this interval the derivative
of order n. 4

. ~\ .
Consider t-hsifp.nctlon 5{z), where

O =|m) 2» et Ly 1

.C\’}“ Hig) x w1 ® 1
N . .

¢ ”\j’ ’ ﬂx“) 'Jr'nn ajnﬂ -1 PP %) 1

. . .

\‘.
gf"ﬁw determinaut vanishes for the values Ty Pyy v v owy Xy DY

¢N© the differential caleulus we see that sinee (o) vanighes for

2 \¥;
\ 3

(n +1) values of 2, its derivative ¢{x) vanishes for » values of
x, the second derivative for (7 —1) values, and g0 on ; the wnth
derivative vanishing for one value of 2 in the interval. Thus
there exists a value z intormediage between #,, @, . . ., &, snch
that ¢z} = 0.

Forming the uth derivative of the determinant by differ-
entiating the variable elements of the first row, we have :

* Peano, Serigti offertl ad Eod' Ovidia {Turin, 1918}, P 833
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o) =l 0 .. 0 0=0

Almg) @zt oy L

[Awn) a2t & 10 .

It we expand this determinant according to the elementa of
the fizst column and solve for f{m,) in the resulting equation,
we find

feg=(oi B ey
: E},. e o ’""'””:if(wg) - ‘
RS ‘T;:‘-Z: ;g;f?‘
L= m) (=) - m\l D oy,

n1

where 13 some number lnbc_rnu‘dlai;e‘between To, By, « » - Ty
This is Lagrange's formule with {Lsf{%m{!%ﬂdg’.i term.

.s’
SR
$

EXAMPLES'QSN CrarrEr 11
1. If flz)= =, find the Jﬁ{\ldt‘d differences fle, b), fler, b, o), and flo, b, ¢, d).

2. If f(rc}: () +:h{g,}r,' where gim)=2% and Rz)=u® verily that
Fib, 1, 11, 18)=glBENIY11, 13)+R(5, 7, 11, 13).

3. Given the:?\lues

§ 4 5 - 7 10 11 13
f{:u), 48 100 204 900 1210 2028

for t-he tahle of divided differences and extend it to inelude the valnes
Ot\Q function for =3 and x=14.

4, Tind ihe function f{x) in each of the fullowing cases:

(@) = 11 13 14 18 19 21
fli) 1342 2210 2758 5830 6878 0282
M = 16 17 19 23 29 a1

flm) 68536 83521 130221 279841 707281 923521

hy means of a lable of divided differences.
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8, Caleulate f{1), given the valnes

® 0 2 2 [ 7 4]
f{’c) 838503 TO49690 720000 B04857 820584 884746

6. Assuming flz) to be a funetion of the fourth degree in @, find the
value of {18} from Lhe valuey

x 11 17 21 23 31
Szl 14646 83526 104480 270848 923520 &\

7. The values of a mbic funetion arc 150, 202, 1452, 2264, and
#4202, comrezponding to the values of the argument 5, 7, Q¥ s, 17
respectively.  Apply the Lagrange formula to find the ﬁu;:p}tirm when
the argument hag the valnes 9 and §5 respectively, ,«;“ o

8, Find an expression for the function in e::c}]‘%} t-h)e examples (6)
and (7), using the Lagrange formula of interpalagiar

9. 1f pla) = f(x}g(cc),\\\\

"4
obtain the formuly, {analogous 1o Leibnitz‘\t;%rmu]a for the nth derivative.
of & product) N

> N4
.
Gy Ty_3s .oy i) = :;‘ Jr{'ﬁt‘-n! o plglEg, oo )
=
. ,:}{ N {Steffensen.}
N
NN
N
"\
AN
&\
©
L)
P
X/
QO
N
~0
/x../
N\



CHAPTER III

CENTRAL-DIFFERENCE FORMULAK

N\

20. Central-Difference Notations.— [ir this chapter wel \'

shall consider cortain formdae of interpolation which employ -
differences taken nearly or exactly from a single horjmrmui line
of the difference table. In order Lo express these mmply 1L is
convenient to modily the notation of the caleulug Qbfbﬁorances

Several systems of wodified notation arelab”use. One,
which we shall frequently employ, was 1ntm(\<hiccd by W, I,
Sheppard* and will be understood from the‘io]lomnw differenee
table. It is basgd on a symbol 8 Whlch ‘ma,y be regarded as
equivalent to AT” ,wherc, E as ug.na,,l dnnutus the transition
from any number to the number mﬂct “below it in the difference
table, te =1 +A Q\.

Binee §=AE ™% and t]{erefore Am=5EE we may write
Aug=38u,, A%uy= 55551, ;_\333\_—. P, o oo Alatg =8y, and so on.
Rewriting the ot dlu‘l] %?\ﬁlﬂl‘lujcu L‘lblo we obtain

Aygrment, Entrill N
& — 2w iy )
o v
L — i"\'yu_l 5 By .
™ U 539
T4 \ -3 o _ 1
aey . Sy S,
M & 58y
N" 3} B
N 2 2 3 ]
\ P 4w Uy 8%, . 8%t
Sat, 83,
: 2 : 84.
&+ 20 Uy g ¥y

If we suppose each row of the dilference lable to be numbered with
the suffix p of the corresponding entry Uy OT, in the eaze of & row
situated midway between (wWo enirics s, and u,,q, to take the number
P41, we nee that A2y the differences of even vrder of w, are repre-
sented in the central dlffermmo notalion by &, sivoe they ave situated

® Prge, London Moth. Soe. 31 (1599, p. 459,
35
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in the row «.  The differences of odd order A%y are represeniod by
the expression 82r+ly, . ; sinee they lie in the row # 4 .

It is often requived to find the arithmetic wean o {wo
adjacent entries in the same colmun of differences. iu the
& system of notation we indicate this mean by the sywhol g,
Thus pdw, is defined to be §{5u p ¥ 0y ), pdPug s J(Bu_, 4 ),
and so on for the mean differences of the other entrics. ¢%he
mean differences may be inserted in the table to fill in Meyaps
that ocour between the symbols of the quantitios felirAvhich
they are dorived. o W

L 3

In ancther nolation which was suggested b}:fS: A Jolle* ihe
symbol /& is nsed imstead of 8, The notation.ds, THustrated in the
following difference table : \

Arguinent.  Entry, w\J/
@ — 2w U_g \x 'v\
Ay \$
& —w U_q B,
&1{, - 1’,’ 7 :‘ Ag-u, %
a ity =\ &zuo A%o
Ay Py
ENT] ty N . /L\ﬂu.l
A A“g
@ - Fa Uy 7N

21. The pl'é\}ton-(}a.uss Formula of Interpolation.—
Supposc Lh&ix: & function f{a + o) is given for the values
\\ CeeG—w ek w, 4+ 2, ,
of itg argument.
(QT in the Newton formuls for unequal intervals we take
ey =a, ¢y =0+, Gy =t =10, ag=0 + oy, fdy=n— 2w, and so0 on,

'\ .
N\ and denote & + o by %, we obtain

f(u) = fle) + (4 — @)/, & + 1) + (v-a){u—a- w)fie, o + w,a - w}
+{#—a){u—a—w) (v ~a+wlflo,a+w, 0w a0t 2u)
+{w—a)(u. (c—w)(u—a+4.a}(u~a—2fw)

Ao, a+w a-w at 2, a- 2ur)
+ (u—a)(u—a~w)(u—a,+w)(u—a— 2w (1 - @ + 2u0)
A, e+, a0 W, &+ 2w, a - %w, &+ 3w).
... (1)
* Troms. Aet. Soe. Amer. 18 (1917), p. 91.
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The divided differcnees contained in this equation may be
written in the crdinary notation of differences as follows:

Ay at )= Afla),
1
Ao at w0, 0 —w) = 7N flw — w},

Jo, e+ w, a—w, 0+ 2w) = 5 &y)sA":f’(a — ),

cle. e \
Tgquation (1} thus takes the form . O
flaaw) =) +atfie) + K nsfaw) (D

Loz )

Al — w) D

ot Dol =1 =2) Avig _%

NCEDIGE RIS SN

b A\
This fornrala, which is one of f‘gﬁhe. group of formulae known to
Newton, is often called thé\Geuss formula,

The differences used i.ti:‘t;is formula are as nearly as possible in the
horizontal Hne through\v“\{ﬁj in the original difference table. The formnla
is therefore convenient for nse when the value of the argument for which
the function is re(kﬁi;‘ed iz mear the middle of the tabulated values This
formula may bg eepresented more simply by using the symbol (»), to
deunte the 13in’3\n"1'a.1 coefficient

AO7 esne-n @y

7!

50 ;J\aiipﬁt may be written

Q?@ :I-Mb} = fla) + 2Afe) + (202 (e — w) + (z+ 1A% a — )
+ (z+ IyAYe — 20) + (o + 20,485 — 2u) 4. . . (D)
22. The Newton-Gauss Backward Formula.—From the
formula of the last section another may be derived which
is often used when z is measured in a negative direction
from fla), 1.e towards decreasing values of the argument.
Suppose we write f{a— xw) in the form fla +&( ~ )} and change
the sign of w in the discussion of the last section. The
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order of the arguments and corresponding entries is ihey
reversed. Instead of Af{«) In the Newton-Gauss formnly we
now have flu—w) - fla), or —A i — ) ; A3l — ) in the
above formula becomes — A%/{w - 2w); ASfle - 2u)  bevomes
— Ao - 3w), and 30 on.  We thus obtain the formala

Ao~ ww) = fla) — wAflo —w) + (#)aN2 et — a) — o+ 1),A% (0t = 2
+ {2+ 1) AY (a ~ 2u) — (z+ PR T R N

which has been called the Newton-Gauss Jormauli fopgniive
wnierpolation, or the Newton-Gauss baskward Jormuly ;
23. The Newton-Stirling Formula.—In theGaass furmnla

=)+ () + bl ~ T)AY(Aeeh)
+ 3w+ Dy — LA - TR v
@+ Ll - 1) (@ - 2@};‘(& = 2w}, L

L
the terms may he rearrangod t-hus,;”,\

N/, i
A1) =1l0) + SARGY QIR ~ 10, + A — )

A+ o)

fa2 12 ','
- 9._-{_:1,_‘%__’ ]i{fﬁ’ff(a — ) = $AY (1 — Ju))
AN
a2 12
+ (&,ﬁi!—),ﬁ*ff(r; ~ 2wy 4. .,

Suppose we &dplace the differences of even order within the
brackets hydifferences of odd order, using the identities

\x:\' Ao — ) = Afa) ~ Affa - ),
O AR = 20) = MY — ) - A3 o),
B 50 on We obtain the regult
a\
4 Afe PR G
N\ f(a +amw) = fla) 4. m;f(ﬂ)i_%ﬂﬁ - ) T g_r‘ﬁzf(”’ )

Tz~ 12 A3flg _ 4y A3l — 9 2
+ E(_ _75!___)_ - <-_.(a”_ E’)_";_ i(a_ _2?1) +i_(ﬁ.2 ~ 1Ay )
I ) A 20 Ao )

o

h! B
Za® 1% (2 02
+"—‘—'T—-—-)—A6j(cz-— 3wy +, .. {4}
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This formula, which was first given by Newton,* was after-
wards studicd by Stirling | and is called the Newton-Stirling
Formulo,

The mean-differences L{Af{a} + Afi — )}, LAY (o ~ 210) + A3 — wil,
ele, are completely symmetrical with regard o increasing and decreasing

arquinents.  This fact cnables us {o express the formula very congcisely
by means of the central-difference notation of § 20

x2, wlx? 1 w22
ey = 16 + ity + gﬁz-atu + k—,g 1—),‘”-337;,0 + J—ﬁir—&h'iu-
‘. Cry ¢ N \.
P - 1V 92y ¢\
+ Mﬂ—fc—)pﬁ"uo +.o.. By
[+ N/
where pbig=38u. ;+ Sug), ¢ ‘~:;.
p88my =150 _y + Buy), 7, N
! ré
and so on. P\

24, The Newton-Bessel Formula.—Tn the\New;toﬁ-Gauss

formula \‘\ .
Aa+ww) = fla) + aAf{e) + Lalz - ]_)Aff((& - )
+ e+ Dafe — DA« .:.?,_r_-.‘)‘.f
+ 3 {m+ Da(z - 1) (.:-';vﬁ’?;)ﬂff(cn e
let s substitute for § Aa), JH,A?/:(Q};—"?;‘), AN ~ 209, ete., their
values obtained from the identitiss
J@) =/lo + upaifla),
Af{n - %)ﬁ\ﬁ‘%}(a) - A%(u - ),
Alfe ~2w) = AY{a — w) - ASf{u — 2m),
oton @)
The ahavo cquzg.is(o:i heconies

Ao+ ww) =3 (fla) + flat w)} + (@ - HA/)

2 8ot - )+ a3 + D) =D
O ’
D2 =1 @2 4 xag_ 9y + Asfa—w)) 4. . . ()

41

which is symmetrical with respect to the argument {« + La¢).

This formula, which was first given by Newtont and later
used by Bessel, is called the Newion-Bessel formula.

* Wewton, Methodus Diffarentialis (1711), Prop, iii. Case i.

T Stirling, Methodus Diferentialis (1730), Prop. xx.

i Methodus Differentialis (YF11), Prop. iil. Case ii.; Stirling, Methodus
Differentialis (1730), Prop. xx. Case ii.
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If in this formula we write z — § =¥, it becomes
fla o+ gy J{f0) + fo+ w)} + AAa)

Py + 2700 + L A - 0

+ LL__E ) LAY (o — 2u) + A%}‘( -l +. .. (B)

95, The Laplace-Everett Formula.— When it is requixed

to interpolate between f(a) and fl@ + w) in the congfiuition
of tables by the subdivision of intervals, statisticiang ofien se
a formula due to Laplace and Evcrett,* which :rQa.j‘g' be written

O P P R

.2 ]
[+ 2 D 125 N, T
2\

where u, denotes fla 1 zuw), and gaenotes (1 -2}, and where as
usual &* denotes A®K-%  Thug{or Ug, W= $,¢=1-§=4

This formula involves mﬂ.} even central differences of each
of the two middle te rms, of the series between which the
interpolation has to be made.

To prove this {e}rﬁxw.ia we eliminate from the Newton-(zanss

formula AN -

At ) =)+ oAFE) + (@)o0 0 - ) 4 -+ 1A - 0)
NOT t @ DA - 2u) + (o4 2)pAf{a — 20) +

750
the differences of odd order by means of the relations

\Af(ﬂﬂ) Me+w) - flz), Afla - w) = A%{a) - Afla - w),

. \ Asfla — 2w) = Ao — w) - AYa - 2uw) . ..

The Kewton-Gauss formula hecomes

Slo+210) = () + o A+ ) = fa)} + () A0 - )
+ (2 + 1)3{A%(a) - Ao — w)} + (z + 1), Abf{a - 2u)
+ (@4 2 AY 0 —w) - AY{a -2 +. . .
Using the relation (p+ 1)441=()g1y + (p),, this equation
may he written

* Lupluce, Thdorie anal. des Prob., p. 15; Everett, Brit, Assoc, Rep, (1900},
P 8483 J.74. 85, p. 452 (1901). Tables of the co-etficients have been publighed
i Tracts for Computers, No, V,
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Sz +aw} = (L - 2)/{n) + af{e + ) + (& + 1)5A20) ~ (2),A% e - w)
+ (2 + DA% e — w) - (m+ 1AM e - 2u) +. . .

Infreducing central differences and rearranging the terms,

Jla ) = (1 —z)fle) - (©)gd{e) - (e + )34 a) —. . .
+af(z +w) + (w+ 18 e +w)+ [+ 2o +w)+. ..
1¥ we now transform the coetficients of f{e) by means of the
rolation 1-w@=¢ so that (x)y= —(+ 1) @+ 1)5=—(£+2);
ste., we have
flavms) —f) + @+ D@a) + E+ 0+ .
Faflerw) + @+ Lo+ w) + (@+ 2)5 e+ )y

which is Heeretf's jormula for equal ® intervals of the ri&'g-mn-mz.
26. Example of Central-Difference Formulag.—The fol-
lowing example illustrates the varions cent-ral-cli@rence formulae:f
_ To comprite the value of logy, cosh #3655, ?m-?}*f-@ ;g\z'u;’n o table of values
of ludyy cosh  ad dntervals D002 of the argu-'.rne?xl.. \

Forming the difference talle, wo see that Wb differences of the third
order are approximately eomstant. The'differences of the fourth order
will, however, be laken into aecouni simce such a difference may affect
the aconency of the Jast figure of they&ult.

Aviprnent, Enfry. A
0-360 00275 5462 3950
A" 30061 3625
0-362 278 5523805 152 8035
30214 1860 — 2122
0364 2814537 9664 152 5013 —13
) 30366 7773 — 2185
0-366 {284 6104 7438 152 3778 -3
\"\ 30519 1551 ~2138
0-368 £\ 287 6623 8989 152 1640
= : 30671 3191
mogsim 280 7295 2180

\ JIn Evereit’s formula put =3, £=1, and u,=0-0281 3737 9665,

FO-3655)=1(281 5737 9665) + ( —  55)(152 5913) + g7 5( - 13)
+ (284 6104 T438) + (— +L:) (152 3778) + 3755 (=~ F)
— 9283 8513 0404-75 — 14 293759 — 0-13 =283 8498 7a57-03.
-~ log cosh (0-8655)=0-0283 8498 7557,

* Corresponding formulae for unequal intervals have been given by R. Tod-
hunter, J.1.4. 50 (1916), p. 137, and by G. J. Lidstone, Proc. Bdin, Mnath. Soc.
40 (1922}, p, 26. i th

+ A valuable set of worked-out cxamples is given by L. J. Comric in toe
Noutical Almanac for 1937, pp. 931-934.

AN
KQ

Q"
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In the Newton-Bessel formula put o=
281 5737 866D
o L ¥ Ll
f(o-sssn)zgg(%g‘l 44 7438)+ 1(30366 7773)
152 5913
+ (_'332)%(4. 152 3773) — 1. (- 2130) + 53ig (- 13 -3)

= 283002135515 +75016943-25 — 1420564-27 + 16-G8 - 14
=983 8498 7557-02.
-~ log cosh (0-3658)=0-0283 8408 TH57,
Dy the Newton-Gauss formula
f(0-3655) =281 5737 9665 + 3{3 0366 7773 +{
+(— Lo

=283 8498 7556-95,
- log cosh (0-3655)=0-0283 5498 T557.
By the Newfon-Stirling formula >

/3 09.1‘??560
(0-3655) =281 AT3T 9665 + 21 ’
fio-3655) =281 4737 9665+ 3 2k 23,0886 7773

>+ J152 5913

=281 5737 9665 + 22017 8612:38 + 42 9163-03
+116-40 413
— 283 8498 755694,

.~ log eosh {0:3655) =0M0283 8498 75657,

/N

27. The E%ﬁnﬁla.e of the preceding Sections may be
expressed Jmore concisely by means of the Central-
Differene® Notation of § 20.

Eyefeil's formula, -
u§:§% +(E+ 1)+ (£ 4+ 2)5% g+ o+ (G4 o+ -
O oy + (2 18%0 + {2+ 2)58% 0 +. .+ @+ P+ -

\.,”:3 The Newton-Bessel formuls, :

afe — 1Y (n— 1
Yy = p?,é,g + (;c - {;)Sulz + (Q})ﬂ;ﬁzué + “ﬂs_lg)_l('ﬂ '2)531‘51

2 L afae — = p— 1
+(w+1)4#34'16%+(9 Lo 1%108 2) @ 2)85u%+. ..

N w—1
oot @ - Dgudra, + (@47 — gy —2 8Ty, +. . .
¥ 2r+ E
The Newton-Gauss formmula
U ==ty 680ty + ()% + (34 1)gu, + (4 1),8%, + (2 + 2);5%2 "

Tt e — Doty 4 (B4 7)a 18 0, 40 -
2
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The Newton-Stirling formula:
#{a? - 1) 22(zx? — 1%

2
thy = Uy + bty + x—ﬁﬁ Mo+ = pBugy + =2 by 3ug
_12 2 92 Z2(2® — 12) (o 62
+- G )r(?: =% g + = Ay 16)r(6 )aﬁa +.

+ 3w P+ (07 — D)2} 8%ug + (4 5)ge s b g+ L
Fewton-Guuss buckward formula
Uy =ty — XU _ 3 + ()80 — (1 + 1)y0%u
(3: + 1)48411:0 (# + 2);8%_y 4.

¥ 4 N 4
N\

{5+ 7 — D)o ug — (& + 7)ar. |182'”+1?a 1R \\ v

28. The Lozenge Diagram.—We shall now give a me‘shod
which enables us to find a large number of f'ormlﬂm, “of
interpolation. Y \\

Let (p), denote the quantity —(2 )

enbey e +7w). We obtain ab once the 1&,1&@)!}%

(o= 7+ Do — O)cp (1)
Aty _ T+1—Aqﬁ r 3(3-1— Uy (2)

and, combining these cquations, 3 e ,3‘88 that
FORIUE r+1—Aq“5—u ~n(i"+ D41 — (PotafATH

and l\t W denota the

or

(Pl A% _ +(p+1) q+1A’¥ = (p) A%t pyq + (P)yrd Artly . (‘3)
Suppose we arrange ‘she e terms in the form of a “ lozenge” s0
that the terms og{ the’ left-hand side of the equation lie along
the two upper ,g\deq “of the lozenge and the terms of the right-

{p+7) .
a* ] 41

(p) q+1t [ h
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hand side along the lower sides, We obtain the above diagram
in which a ling directed from left to right joining two (uantities
denotes the addition of thase quantities.

Equation (3) may be expressed by the statoment thai: én
travelling from the left-hand veviex lo the vight-hand victex of
the lozemge in the diagram, the sum of the elements wivich lie
along the upper route is equal fo the sum of the elemends »hiohniie
along the lower route. A .

It i evident that this statement may be extegdf\l? Tor
example, let us place in contiguity the lozenges %&‘re:-_:}'_]ond-

ing to N
p="1 p=n-1 PR
e ] = N\
0 O 1

80 that the upper vertices of the ]ozexrg}s, whicl are of the form
(p)sA%_,, form a sort of differenge(table :
(n)Au_y D
A A%
(n— .];ﬁfa“o
We obtain the following\diagram :

) MQ}\L Au_1

{o+1)
1, { 2} ﬂi‘“
¢ \} @), /(“)2 \(11-1—1)3 .
“\*'._\ }» Al Au,
& (n-1) (M
\'\\ 1 \(n]g . /
N\ u, du g
. ON” (n 1)
\W -1,
\ {n-1}; Au,
Fic, 3.

Applying the rule given by equation (3), it is evident that
the sum of the elements along cither of the following routes is
the same :

o+ () A+ (11 Val¥Pu_y 4 (mx 1),A3u
ot (n) Aug + (n)yA%u_, 4 (7 + 1),A%_,,
g+ () Auy + (n)e\2u, + (n)3A%% .
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Bince fv.-0+(_n)lAu-0=u1+(n—])lAuo, we may form three

other expressions beginning with the term #, instead of %, and
equivalent to those already given, namely,

a4 (1= 1), Ang + ()% g + (n+ 1)58%

and Lwo similar expressions,

if we examine the structure of this diagram, 16 will be seen
that the values of g und » in the expression (p)A%:_, are N\
arranged in preciscly the same way as for the differences
Atf( - 7w} in an ordinary differcnee table. The values of p aref )
cousiant along any diagonal descending trom left to right b
the <iagram, while along & diagonal ascending from left ta ‘,ri"ght

alues increase by unity at each vertex. The fitgbvalue

of y ulong either line radiating from w, is taken to be)p = n.

Ity extending this diagram we arrive at the @owing, which

x'\

=~

¢*{
2 A\ 2
v }»&u_a\ A\ v’ }ﬁu_“/
{n+2), e (n+3),

), s
&N 3
Au_2< AN } Au_3*<
{n+1) ‘“;‘L ~1+2
1 (11‘1-2]2 S (fz)

P
o ), (g4 (nl2), ()
}ﬂm_1 - :':: ]‘6311_2
n), ¥/ {nt1}) 1+2
‘-10/( ) i"\X\ (n+1)2} Iy E ( )4}&_;”
‘\ﬁ{(q\j “ (n), (:H—i}ﬂl B {ntr),
\\(n ) }Mo () JMA (1)
\u: 1 (n)._,} 2 8 4[;111_1\/
o (20, (e w.)

{n -1)1
}.3111 < }:ﬁ?uo /
{n-1)4

(n-2}, n- {n),
- 2) ( :)2} . }HM

ug Auy <

., 4.



e

o

W
\ 3

46 THE CALCULUS OF OBIERVATIONS

may be called a fozenge or © Fraser” diagran sines it is a
modification of one doe to I, C. Fraser.®

Now the Gregory-Newton formula for u, is the sum of the
elements from w, along the downward sloping line to the line
of zero differences, 8o #,=the sum of the clements Itom w,
along any route whatever to the line of zero differcnces.

From the identity ug+ndu, =2+ (n - 1)An, 1t i3 evident
that the value of %, I8 unaltcred if a route is seleeted slarting
frow u, instead of from w, JIn general the sum of LA NOnents
along any roule proceeding from any entry w, w?wfmr’ fo the
line of zero differences is equal fo w,. N

Applying this ruls, we have at onece from the ]whge, diagrm
1, = g+ A _ g+ (1 + DA% 54 (n+ Z)J.li":a_g )

x,{t,tﬂ, +8 A bl 4

iy, =g+ (M Au_ g+ B+ 100, + ;};\Dgﬂaag_.&
PN +(n+2)_13.4u._2_+. .. B
=g+ (W dtg + (RlpA%u_y + (43 1{ ’3'1“—1 H{at a8t _g+. o (6)
thy == 2ty + (0 — 1)y Bug + {n) A‘Z;;‘y_]. ('ﬂ A3 e 1A 4. . {7

Rewriting equations (::,1'((}) in the contral-difterence notation, w. find
th, = g+ (W sy 0N TSPy + (24 1)58% 5+ (0 + Dy k. -
and ) i%}
Uy, = 2y {«Q}ﬁ’u% 4 {82y + (2 4 18P0y o+ (0 1)yb%ug +.
which is the §wmwion-Gauss formula.

If we npg’;:j:ﬂ'e the mean of these valuos of ., we obtain the formnla
whose gKﬁ'erences are along the row corresponding to wg:
, "?b’—r {2 %+ B + LI in 4+ 1) + (m)g b 82,
> (0 U014 ) 4 100 2+ (at 1)y} 80+
* gr
thy = 1y (il iy + TP+ Lafn® — 1)pdBug 4 an? — Db, 4.
which is the Newton-Stirling formula.
The mean value of w, from equations {8, (7) may be cxpressed either
25 Everett’s formmla or az the Newton- Bewel formda,  Writing (8), {7)
in the eentral-dillerence notation,
= g -+ (1) Bty 4 (B + (i Vg + (4 1),8%, +
Flrdr = g ug - (0 40y, Sy ., (8)
Uy =ty o+ (b — 1) 8y 4 ()l + + (R)gBuy + (n 4 1) g LTI
+ (0 +7 = Dl ey + (n e — g, 8% H gy g, .0 ()
Taking the arithmetic mean of these values of %y, we may climinate

* J.I4. 43 (1908}, p, 238.
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d1iﬂ1u:a of oci,’ri order by appying the ,.1*{-:]a.1,ionsl (Mg= @+ Vg1~ Plyta
apd &3 lyy =8 — 8. The coefficient of 8% takes the form
Timbr = Lge+ it rlgry+ (47— Ugrzq} or (v+2)peyy. The eco-
cficient of a2rug heeomes {47~ Ligr — (B Plypsg — (0 + 7= Ugriyg}
or — {it ++ ¥ — Llgp g, and by substituting £ for (1 - n) we see that
— (= Ty = == Ear = +"lor+r

The arithmetic mean of cquations (8), (9) may thus be written in the form

sy == Futg + (€ 4 1058100 + (€ + 2hdhug +o o (E+ Tl 28U

+ ity -+ O+ DgSy + (04 2)g8huy +. 0 (0 p)y BT+ L

which iz Everelt’s formula, y \:\

Siippose, however, we find the arithmetic mean of the values oftgs, ©
in {8 andt {9) and simplify the coefficienis of differences of wdd vxdg¥in

.

the resulting cxpression by means of the relation R
t —5¢

¥
g+ @tr—1Lyg=0+7— L _m'k -
We now obtain the result ’
i — 10— ) e Nob
U= gog 4 (1 — 3380y + (1)guduy + e #_@@3@(:&'@-{- L)y puddeny .,

n—%
1

+(??.-+?‘—1)2.,,”02""2{-;-}-(%3{—"{-'-])2,-2?‘_'_ 02f+1g;+. ‘..

which iz the Newion-Bessel formula. 9§

29. Relative Accuracy of Qelitral-Difference Formulae.—-
It iz frequently necessary tosuie approximate formulae which
terrainate before the column of zero differences is reached. Irom
the Jast seetion we havegden that the sums of the elements along
any two routes whigh\f}:l‘minate at the same vertex are identical
II the routes terminate at bwo adjacent vertices (17,390 .4 3T
{p) A% _, which' are in the same “lozenge” the sums of the
elements gﬂ(\)iﬁ"these routes differ by (p),(A% 41— A%u_,), Lo
hy (p)Ai_,. Ilixtending this result to routes ferminating in
the saite column of differences, for example, b A% _, and A,
it isevident that the sums of the elements along these routes

Qiﬁ‘ér by (5 + 2), A%+ (n 4+ 1) A% o + (), A% -y

We shall now consider routes that De along horizontal
lines; these yield the formulae confaining mean-differences.  In
the last section it was shown that a mean-difference formula is
obtained by taking the arithmetic mean of the elements along
two adjacent routes. From the mode of formation we sec that
the snms of the elements along such routes are identical as far
a8 the vertices ab the intersections of the routes. For example,
the Newton-Gauss formula is equivalent to the Newton-Stirling
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formula as. far as differences of even order, and it is also
equivalent to the Newton-Bessel formula as for as differences
of odd order. When & formuls is eurtailed, the question ariges
as to whether it is more advantageous to scleet a ruiie which
terminates abt a moan difference or af an ordinary dillirence.
The following diagram represents the portion of thi lozenge
disgram along the row corresponding to wy and adjsegnt to
the differences of order 2. Lot A denote the moesNdiffer-
enee (7 + 7)oy 128 Hasy, and let B denote the mean{dillerence

(n+7 - i, O
k' 3
{n+tr) ’
20 41
(n+r)=r ar "%}" (“+r+1)7"+2 ar+ E/
I S 2nhihhbih 0o
"'\ {n+r) ~

s [5)
Q .’;’ (nera1
(ntra1) § @ s% 2)l‘+1
ar .201'
v

)Y Fres B,

The routeyalong the dotted line throngh A represents the
NewippsStirling formula and the route along the dotted line
through £ represents the Newfon-Bessel formula. Tho fNewton-
Ganiss formula, which is represented in the diagram by a zigzag

.f'\lntermediat-e route, is equivalent to Lhe Stirling formula at the

vertices 8%, and 2y, and it iz also equivalent to the Bessel
formula at the vertices 82~luy and 8¥+1lyy,

Consider the three routes representing the Gauss and the
Stirling formulac and the formula which contains the differences
By g Sy, Rrtly 3, and 8+, If we suppose these
formulae o be curtailed go that the last difference of each is of
order 27+ 1, we may compare the accuracy of these formulae
by ascertaining the magnitude of the neglected terms of order
{2r +2). The sum of the clements along either of the rontes from
the common vertex %42y, to the line of zero differcnces being
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the same, the most aceurate formula is the one in which the
negleeted terwn of order (27 + 2) is the smallest. These terms are:
(1 Py oy, Fin A Pare + {0+ 7+ Ljgey 2} 8%+,

(7 + 7 + D)oy 28%+uty
respectivoly, and they are also arranged in ascending order of
magnitude. The Newton-Ganss formula is therefore more
aeourate ag far as mean differences of order (2r+1}, when
further forms are neglected, than the corresponding Newton-

Stirling formula passing through the same ditferences of even {

order ; and both are more aceurase than the formula containigig
the diffsvence 8+tu_p Tn precisely the same way }me‘s‘ea
that the Dossel formula is more accurate than thoyGauss
formula ns far as differences of even order when further terms
are noglected.  In gemeral, o contral-difference Formulin termineat-
tng af o saean difference of the entry ty 8 'mo}ﬂ:acmmte than
o furmile which is curlailed af the cortesponding contrai-

difference of wy_y, ond it 15 less accurold Wan @ formula whith

is curtnilul af the corresponding difeeeate of %y:1.®

We shall vow illustrate by an expmﬂé the superiority which central-
diNerence formulae generally havesoyer other interpolation formulae.

Let it be vequired 1o find aip\ where — L= If we emp.loy for
this purpose an interpolatiel formula which proceeds according 0
central Jdiferences of wgfant: ’stop at the (2r+ 1jth term, the resnlt Is
the same as if we employed Lagranges formula with given values of
Yoy Mgy - o - Ui that Ly §19 flie error is

Ay (et —1) . . % — ) e 1l
) .’:\..— ‘_(2ﬁ m f (5))

where £ dghdbes some number between =710 and «+ew  If on the
olher hahd we cmploy the (}regOT’y-Newtou formula, and stop a:t- the
(2r + A0 torm, the rewult we thereby oblain i¢ the same as if we
PR 51&?-‘&'1 Tagranges formula with given values of g My -+ o Vam 80
‘*Qﬂ. the error is

fp 1% . .. (5= 200
p—1) . - @ Wharragy,

(2r+ 1)1
ctween @ and ¢+ 2rw. Now flzﬁl}{?
does not, in wwost eascs, differ greatly from Fiae+iliy), but @+ (@ "]_Jr; t)
-+ . (@w—r) i much amaller than afz—1) . E (o—2r) 1L & S0 }:‘1 €
value when ~ { <p<} Thus the error i smaller in the former case than

where 5 denotes some number I

alation formmlae is givel in

1906}, p. 320, and 10 {1911}

Tyang. Fao. det.d (1923).
3

* A dotailed diseussion of the aconracy of intery
bapere by W. F. Sheppard, Proe. Lond. Muth. Soc. &
B+ 1395 T, . Yraser, . 4. 50, pp. 25-27 ; 3. J. Lidstone,

(mB13)

N
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in the latter.  TFor this reason central-difference lormulas sre prefer.
able tu the ordinary formulae for advancing differenees.

The following remarks* are of general application :

“Formulas which proeeed to constant diflerences are vxaet, aud are
true for all values of # whetler integral or feactional.

“Formulas which step short of constant, dilterences o approxinations

“ Approximale formulas whicl terminate with the swne differomee ate
identically equal.

 Approximate formulas which terwinate with distincd dilforances of
the same order are not ientical.  The differcnce hetwen stheln s
expressed by thte chain of lines necessary to vomplete the r_:it;g\u\'(’f

30. Preliminary Transformations. — In _égitain cases
formulae of interpolation should not he u‘sécgi until some
preliminary translormation hag been effe(}te\&;} We shall illug-
trate this by two examples. O

Er, 1.—Suppose that it is required to ﬁ%il Lsin 15" Wy lLave from
a table of logarithms the following entridds
4

¢ Z sini 0.

0°0°10" 56855740 )
wB010300
20" 59866049 (O — 1249388
LN 1760812 TATR64
ao” 6:1626941 — 511524
1249388 2311236
40" G-2RT6310 ~ 980288
(\J 969100
50" < \¥-3845¢49

The differences arc evidently vory slowly convergend.  One reason for
this wil\be seen when it ia remembered that when & is small and
v —@ytadians, then sin z=s - 3. . L and 2=6sin 17 mearlys,
Qﬂ}‘hﬁt L sin §=T, sin 17+ log ¢ (nearly), and the ditferences of log &
Aonthe valnes 10, 20, 30, 40, 50 . . . of & are very slowly convergent.

\ We theralore ealevlate I, sin 8 when & ig sewall by adding the iuter-

sin § .

polated valnes of L(l—g—j, which has regular differences, and log #, for
&

which tables exist with snaller intervals of ihe argument.

Er. 2—Buppose it iz required fo interpolate between twe terms of
such a sequence as the following ;

oL ML A D6EY) e lgegees
PoreHD pp+)p+2 plpi i)t oLy
where r and p are two wide] ¥ different, numbers,

* Do Fraser, J.7. 4. 43 (1809), p. 238,
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It s hest to interpelale In the sequence of numerators
Lo rir+ 1, wlr+10(r+2) . ..
and (o Interpolate separately in the sequence of denominators
Lpplp+ 1 plp+1){p+2) . ..
We then divide the former resull by lhe latter, in order to obtain the
required interpolated valne.

Stirling (Methodus Differentialis (17300, Prop. xvil, Scholiun) says:
“Ag in common algebra the whole art of the analyst docs nol comsist
in the resolution of the equations but in bringing the problems theroto 5
go likewise in this analyeis: there is less dexterity required in the\ \
performance of the process of interpolation than in the prehmlnar}
deterinination of the sequences which are best fitted for 111terpolq,ﬁwn

108

The general rile is (o make such transformations aw will plake the

interpolation as simple as possibla. ,\\

Q)

.

ExaAMPLES 0N CHAPTER IIIx.\\,

1. Given b

sin 25% 417 40" = 0-438 571 VTGRS 565
gin 25° 492 0"==0-433 659 08hHET 544
207 = 0-433 T4§ 46 442 359
40" =0-483 5»3..3 518 219 189

find the valne of =in 25% 42" 10" by lpe.ﬁm\ ton-Gauss formmla,

2. Find the value of log sin G‘{J 6' 8”-5 laving given
log sin O° 16 j\’—'T G700 999 7500
R = 7671 448 629 9
AN 9 =T-671 897046 4
N 10" =T7+-672 345 000 2

X

IJ

IJ

nsing the Newlon-G ap&s formula,
Check your J\t‘ag\lt hy obtaining log sin 0° 16" §”-5 from the following

daia \“
{\ log sin 0% 16" 6" =7-670 550 405 &
N 87 ="T-671 448 620 9
e 10" ="7-672 345 000 %
A \ef 127 =7-673 239 524 3

3. Apply the Newton-Stirling formuls to eompuote sin 25° 40° 30
from the table of values
gin 25° 40 0¥ =0-4331 34755866463
20%=0-133222179172439
A0* = 0-433309568404859
sin 25% 41 0" = 0-433386053563401
20" =0 433484324647243

and verify your answer, nsing the Newton-Bessel formula,



62 THE CALCULUS 0¥ OBSERVATIONGS

4, Cliven

log 310=2-4913617

320 =2-5051500

- 330=2-5186139

340 =2-5314789

250 =2-3440680

360=2-5503020
find the value of log 3375 by the Newton-Dessel formula, verifving the
result by ove or wore other contral-differenece formulac .lllri vl 11»\1“8'

it with the true value. [3-5282738.)

5. Bhow that the lozenge-disgram methed reslly dvrjs \(\« the
interpolation Tormulae by repeated summation ¥ ) mb c'\ i nse
of the formula

g 1847 = Alrgay) — v, Au,, K \&\‘)
which is the analogue in the Caleulus of Diff: ere{:é\of the form:

fudv=us- —f‘bda\\
\/

in the Integral Calealus, Y,
¥ 4
L %
33(\\
\
N
‘:3\,‘
o
Ny



CIIAPTER IV
APPLICATIONS OF DIFFEREXCE FORMULAT

21, Bubtabulation.—An important spplication of inter-
polation formulae is o the extengion of tables of a function.
Thus, supposing we already possess 2 table giving sinz af\.
intervale of 1° of 2, we might wish to construct a table gi)-'i;ig
sin @ ab intervals of 10" of . This operation ig callgd gid-
tobulasion.  Subtabulation might evidently be perfduhéd by
calcniating each of the new values by ordinaxy JBerpolation,
but when she new values are required in this wholdsale fashion
it, is bLetter to procecd otberwise, forming ﬁ{ﬁﬁ%i& differences of
the naw sequence of values of the functieh{dnid then calculafing
the latter from those differences.” D

Let Ty, Ty, T, Ty, < - - be B giyeﬁ: %equence of entries in a
table corresponding to mt-ervalg"@}f of the argument, and let
tlheir successive differences be AR =T, - T, AT, =T, ~ 2T, + T,
ete. Suppose it is desi;’ﬁ:d: t5 find the values of the fuuction
in question at intery ]i{fw;-’m of the argument so that (m—1)
intermediate valuegharé to be interpolated botween every two
consceutive mewbers of the seb Ty Ty Tor o v o Denote the
seqnences Lhus{m’quired by £y ty Lo - - 5 BO that £, =T, tn="Ts
Lo =Ty, ta =Ty, etc.,, and let the successive differences in the
new segﬁé&e be
LNt A=ty A2ty =1y — 2t + o €10
Whgeré A, is used ipstead of A to denote the operation of
}ﬁﬂ“urencing in the new sequence. The differances in the new
sequence may now be found in terms of the differences in the
old sequence by the use of operators in the following way.

* Tagrange, (Buvres, 5, p. 663 (1792-3). CF. T, J. Comrie, Monthly Noticcs
R.A8., 88 (1928), p. 506. F. Emde, Zeitschr. f. angei. Math., 14 (1934) 333.
K. Camp, Trans. dct. Soé. dmer., 38 (1937) L6 The discovery of gubtabulation
shonld be credited to H, Briges {1561-1631), who used it in his gomputation of

log. tables.
53
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Denoting the initial value 4, er Ty by #{«), we huve by the
Gregory-Newton interpelation formnula :
8y =fa+wim) =Ty + (Lim); ATy + (1fm) Ao+ (1) N4 . .
and the operators A; and A are thus connected by the relation
Ay = (Ljm)d + (1fm) A2 + (1fm) A+, | . (H
Suppose for simplicity that AT, is the last non-zere difference
of the original sequence, so that AST,=0, AST, = @N\ete.
Equation (1} gives A\ -
Ayt = {{L/m)sA + (1fm)pA2 + (Lfm)yA + (1 ) A (9
If we now substifute the values s=1,2, 3,4 in the Tt o +{1ation,
we are able to determine all the differences ofy thu Mew siguence
in ferms of the dlﬂ'erences of the old seque.mé

- — ) (] -3y,
- Alt,]:-W—LATu A2T ( bms\w AT,

(l 7)90(1 — ‘3m)(1 - }H?)A“IJ_' (3)

PN

At = —Azr 1 AsTa, ( 1)2(31 10) parp (4)
A= J—ASTO 3(1: - zﬂ)MTo, (5)
A4%_-—AHJ ~\ ()

When the d}Tferenees are thus caleulated, the entrics ¢, 7, &
may he, derlwd in the usual way by simple addition, The

valuned @\f b fomy byms « . . formed in this way should agree
with he tabulated values Tl, T, T

'\\Ta —The logs of the numbers 1500, 1610, 1520, 1530, 1540 being

gwe}? to nine places of decimals, fo find thg logs [;f the i‘,“t(‘gﬂ}s Lelrween 1500
" and 1510.

The difference tahle of the original values 3z as follows :
No, Lo, A, Al AR, At
1500 176001259

LT

2885688

1510 178976947 — 19047
2560641 249

1520 181843588 — 18758 —4
2847843 245

1530 184691431 — 18553
2829200

1540 187530721
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Hore =10,
1., . . L
i A_,}:W:\ — 4)= —0-0004 in the ninth place, which is negligible,

Af= .—?1;2-19 - 3{;1 — 14_0)“ 4)=02544=0-25
1o 210 which is approximalely coustant,
2 1 o (1—10) (1 10T —

A= g 1901'“r(_l'o Dodp 4 1102(104110) 4= —192:74,
A = L agss — 10} (1-10)(1 —20),
Al..._mzss.a.)ssu Sgr |~ 19047 T+ (..10_249

—_ 2 —
L1-10 (;4 102) (1 -39 _ 8 \
= 2885688 \'\‘ 2
dl 115 N \ w4
T 09(’5 (‘s.’"
0-05265 O\ *
= 280433094 \V
e, Tgs. Ay PERNNIN
1500 1760912591 ,'\\;
2604331 ¥
1501 1763806922 102074
2592404 ()" 0-25
1509 1766699328 )¢ - 19249
2890475 0-25
1303 1769589805 ON - 192:24
2EREH5-8 0-25
1504 1772478363 —191-99
{\\ 28REGA-0 . 025
1505 177336409 —~ 10174
\ G\é\ 2884719 0-25
1506 177829716 —191-48
A/ 2882604 025
1307 /5 NV78113252-0 - 19124
N\ 285089+3 025
L3087 1784013412 — 19090
R\ 2875982 0-25
LN 500 178680230+4 —190-74
~\J 28757074
N,/ 1510 1780769468
The required new table is:
No. Lng. Ao, fog.
1500 3176091259 1506  3-177824972
1501 2176380692 1507  3-178113252
1502 3-176669933 1506  3-178401341
1508 3-176958081 1509 3-178G80238

1504 2177247836 1510 3178076947

15045 3177536500
and the final value of log 1510 agrees with the original value.

N
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32. An Alternative Derivation.—It is frequently conve ot when
dealing with a function whose degree is known 1o ineert values of
the funelion, intermediatc te those already tabulated, by vir following -
method

Suppose, for example, that a function fa) may be repeeented by a
polynomial of the third degree, and that wvalues of the lenition are
tabulated at intervals w=10 of the argument. Lot it be requivm] 1o insert

values at an interval w=1. Using the notation of 1he Ll zevlion, we
have (by the Gregory-Newton formiula) N\
To= iy

Ty=tig="fo+ 10848, 4 4842, + 120431, N
To=1lay=1g + 204:85 + 19042, + 11404 3
Ty=tsg=ty+ 304k + 43042 + 4060350
Differencing these cquations, we see that A\ 3
ATy = 1044, + 45A,%) + 1204k,
AT, = 1024, + 145728 + 10808, 1,
ATy =108yt + 245421 + 29204 %,
Bimilarly AT = TO0A %, + 900N 3¢,
AT = 100A 2B 900A 1,
-7, ATy = 100034y

The leading term and its differengés for the subdivided intervals are

seen to be A Bty =-00] ‘zﬁ?Tm
B2ty = QIO — .009A8T,,
Aty ="FAT, — 045A2T, 1 0285A3T, *
frum which the valu{s iy Ty g, . -, are formed by addition.
Bs—Having gibew buble of values of log x al sntervaly of the argument
w=3, to @'nseri\{&u‘)’é@n log 6250 and log 6255 the fniermedinic valnes of
the funciion wt intervals w1

Py ok ntry. A AR
Pt AN Ty <log 6250 = 37958800
O _ 3472
' M Ty =1og 6255 = 3-7962272 -3
A\ : 3470
O Tp=1log 6260 =3-7965743 -2
AN . 3468

~ Ty=1og 6265 = 37969211
\ 4 The differences of the second order are approximately constant, so we
) assume Jog @ to be & polynomial of the second degree,
To= ty=3-7958800,
Ty=ta=ty+ 580+ 1082,
To=ti,=1o+ 1041, + 4582,
LFp = BAty + 104 2 o 3473,
AT, = BAE,+ 354, %,
ATy =95 L -

_* These are precisely the set of equations of § 31 when ATy, the third
differences of the tabulated funetion, ave assumed to be constant,
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From tiese equations we obiain the values

Affy= — 012, Aty=694-84,

expresscd In units of the seventh desimal place,
TForaing the difference table for the subdivided intervals,
Entry. Ay Al
log 62 50 =379H8800-00
634-84
log 62 51 =237955404-84 —-012
69452
log 62 52 =37960189-56 ~0-12 AN
694-60 o\
lop 62 53 =37960884-16 —012 >
694-48 N
log 62 54 == 3796157864 -0120)
694-36 )

log 62 556 =237962273-00
We muy now {nsert these values of the funetion in the sablo of values, thus:

log 62561 = 3-7959495)
log 6252 = 3-7960190 ete.

’.“ . 4
Wa sy obtain without diffcultyformulse for subtabulation hased
ou eenisul-difference formulac, or, ond Everstts formula.  These are

frequ te be preferred to thesaitbtabnlation formulae baged on the
Gregoty- Newton formunla, ’ 4

O\*'i.‘-_lg 1o the rapid accespulation of error in the higher orders !Jf
difforenecs, cave must b (ken o include additional places of digits in
the compuiations, as in m above examples.

33. Estimation of Population for Individual Ages when
Populations,oairé given in Age Groups—We shall now find
the ""cl-lu(é"gf’a statistical quantity, such es the population 'of
a given(Wistriot, for individual years, when the sums of its
valuedfor quinquennial periods are given.

Mot ., ., %oy w_y, g, Uy, Ug . .- DG thE values of the
u‘antit}' for individual years, and let the quiuquennial FUMS
be . . . W, W, W_,, ..., sothat

W, =u; +ug tH; +¥ TUy
W, =ity % +ip +U 3 +¥op
W_ i =t_g+¥_gtu_gtti-gti.n
Tt is required to find the value %, in terms of the W',

* Q. King, J.I4. 43, p. 109 (1909). See also B0, p. 2

(D EiLy 3

-
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The Newton-Stirling formula may be written

Au_j+Auy n? s n{n®— 1) A%y gt N
I&nm‘uo-!-ﬂ— -2— —+‘2—A 315_14‘—6"— — 4
n2(n2 — |
+ —‘(fﬂ—)id-’f-._g [

If we denote #,+w._, by ¥ and ueglect the dilfcrences of
the fourth and higher orders, we may write

AN
Yu = 20y + 22A2y -t A
Therefore Wo=uy+y; + 1, \ \/
—buy+5A%_;,
N
and Wt Woy=gs+ 0+ 05+ 6 400

&/
=10uy + 1352803}

Eliminating A% _, from the two J@at equations, i, may be
A

expressed in terms of the Wy - i

R
125u,=27W 3 W _,+ W),
or, writing A*W _, for {(W_,22W, + W), we obtain the result
1250 S BW, - A2W ___

or U BW, - 0-008A2W _ . (1)

Fu—To find the vghye o:F the guantity for the middle werr of ths Sf.'cil?ldl
quEnquenntwm, wheth Whe Jollowing wre three conseoutive grtnguennisl
sums: 36556 5, 30887 1 41921

Denote the “given quingurennial sams by W_1 Wy W, respeciively,
and form a #iMference tatble,

</ W_,=36 556
\V 2831
~0 W,=29 387 — 297
N\ 2534
N\ Wy~41 921

The required quantity w, is therefore, by (1),
=02 % 39 387 _ .008 {—297)
=7877-44.9.4
=T879-8,
50 Uy = TS,

The above formula may be extended to include the fourth

erences of the W’s when we neglect the differences of the #'s
of the sixth and higher orders* We have now

* When the gron
divided differences,

P8 are unequal, we can proceed in a similay way, using
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Yn=Upt¥_gp
= Duy + mPAZ |+ pnA(nf = 1AM,
Wo=2g+y:+¥e
e Bty + BAM L + Aty _y, (2)
W+ W oy = 10w+ 135A%_, + 3T7A% _y,
Wyt W_oy=10u,+ 510A% _; + 4627A% _,.
Kindnating «, from the three last equations, we have
ATW _; =128A% _+ 3TBAM

aad AW, - AW _,=375A% _; +4250A% _,, O

and eliminating A,u_, from these two equations we ﬁp,(}(ﬁﬁat

Ay, = 0-00032A0W _, N

anc A%y = 0-008BATW _) — 0-00096A WSy
If we now substitute these values in eqﬁéﬁon (2), we obtain
the resuls :‘:‘;
g = 0-2{Wo = BAR I _y),
or ay= 0-2W, — 0-00SAZW 3 0-000896AFW o,

This value of 4, was ato given By . King.* _
The following demonstrati{r\ of a more general formula is duve to
G, J. Lidstone. 'S

VY
) \¥\ * B} 1

Let Wys=Zu, W= 2 g ele.,

£ > i *I1
79 N
. \\J {2 Fllz—7--1
and lel O Ya= L Uy
4 '\“' u

whers p is\%{g},ﬁ“number independent of From these definitions we
have at c(ﬁae

Q Agy =Wy
O =Y 1 =% 1
‘W'Q » g =Y, , L I
A~ L W TR et meu

In Bessel's formula,

A 2 1
; Yoty wBod Aty My MM Dng,
#1y 11@_:"0'2 1+-mﬂ-yﬂ+ - 4 ol + 3] A%y 4+
1t 1
bt TSt 1)

Fovm the difference 4y .p— ¥t -m apd in the result substitnie W and its

* JI.4, 43, p 114

{
&
R\

\.

N
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differences for Ay and itz difforences. We thus obtain 1l reruired
formula,
The result is
mim? — 1 mim? — Jym? )
(_) I8 *1_)@‘2w_1+ _(_i.._a_)_\.a\\. ol
o =

b == P W
g = 20 W, + B2

which, when 2r4- 1 = 5, becorneg
o= 0-2W ~ 0-008AW _, + 0-000896A1W , 4. . .
a# found above, QY

34, Inverse Interpolation.—We shall now cogtiger the
process which is the inverse of direct interpolationgmh.ittly, that
of tinding the value of the argument corl‘esp{gnﬂiﬁg o 0 given
value of the funstion intermediate between twoftaiﬁdu ied values,
when a difference table of the function is’g‘f\tén. This iz kuown
as wnverse tnterpolaiion. '

Let flo + 2w) denote a particular vdlue of the function of
which the differences are tabulated, “ We now wish (o Hud the
value of the argument z corzésponding to Hea+zie); for this
parpose it is best, if ~ ]« Tty bo use Stirling’s formula. ¥

S+ @w) = 7le) + o 85) + Al - w)} + 12A2(a - o)
+ (@ AR LA — w) + AB/{q - Qu)}
+ 2B - 1A (0 — 2+, . . (1}

‘a1 R\ :
Dividing thraifghout by HAAW) + Ao — )}, the cocliicient
of z, cquation\(1) may be written in the form

o= 122Dy - Jo(a® - DDy~ ez~ Dy —. . . {2)

whopsihn = {la-+ ) — {a)} 13 1A/ () + At — o),
\:';\“ Dy = (8% ~ w0}/ {AAw) + Af{e - )},
Dy = (A% e — ) +- A¥{e - 20 1A A ) + Af{w —w)

1
bR

AN and 80 on. 'We have now to solve equation (2) by successive

N
%
\ )

approximations. lst approximation: x— Substituting this

value in equation (2) we obtain the 2nd approximation:
Z=m—gmiDy — Lm(m? — D, — Lim2(m2 — D, ...

This value of z is now substituted in equation (2) to form the

3rd approximation for x, and 8o on for further approximations.
*If T2, Bessol's formuls, should be nged.
TAn excellent method of performin

enlating machine is deserihed by
1937, p, 034, e by L.

g inverse interpolation with a cal-
I, Comrie in the Nawticel Afmenan for
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Tostend of soling eguation (2) by sucocssive approximations we may
arrangs it in the form

i == 4 32Dy 4 Bl — 1Dy 4 Fpefln? - 1Dg 4.

We liav

way b

v merely €0 reverse this sories to obtain a formula from which =
fornd by direet substitution, namely,

wemmil 3 Dy+. o I+ ¥ — 4D+ 5Dy — 1Dy —. - )
+ 3D - A~ L)
As an cxample of inverse ingerpolation, suppose we wish to find the
positive oot of the eguation * S

O\
T4 284 — 480 =10, O

N

- Wriring y= W7 + 282 — 480, and finding by a Tough grapht b the
foot is 2 litile over 1-9, we construct the following diﬂ'eren{igta:ble:

7. A AL v/ az,
190 — 257110261 RS

11-0886094 O
191 — 146254167 02293434

113179528 ()" 0-0041112
1:92 - 33074630 W\ (2334546

11-55 14074 0-0041775
1-03 §-2439435 o8t 02378321

11-7880895
.94 o0 "
194 20:0329830 &

Hyidently {he root lieg m%gvketl 1.92 and 1.93, and therefore if the root
be 1-82 + 0-01s, we have'by Stirling’s formula in equation {1):

O~ - 3'30746.39:;#1 143468012 + 0-1 16727342 4 0-0006907(<% - )
o - 3307839 + 11-4330804c + 0-1 16727842 4 0-0006007T:5
Di"'idiﬂighiéughout by the coeflicient of «,
OV - 025026505 - 0-0102088%% - 0-00006042°,
Jabapproximation : = 0-28926595,
gnd approximation : »= 028926595 — 0-0102088 x 0-083675
Y% _ 0-0000604 x 0:0242 -
= 0-28841027,

3rd upprosimaiion : x=10-28026585 — 0-0102088 x 0082318045

— 0:(000604 x 0-0240
=0-28841533.

The regnired rool is 1.92928841533, correctly to 10 lecimal places.

* This equalion was suggested by W. B. Davis (£d, Tumes, 1867, p. 108)

but solved otherwise by him.
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35. The Derivatives of a Function.—I'ro: tho Gregory-
Newton formula

Ao ) = 10) w(0)+ 22 Dy
+ﬂ.!‘_-—_]? !(Ri__g}j:lif'{‘,r} o (l}

we have at onoe
Ao+ aw) - fla) - O
£ .‘\\.

1 z-1,,. c=1{z-2), ¢\
=)+ 2 s 4 G )( =TT L
Il & is taken very small go that zw—0, t;llqml{;f'f;éh;u]d side of
the equation is of the form e+ 1) — fluh . 1o limiting
value of this expression when %-=0 ig <bho devivatire of the
function Az) for the value @ of itgdreument, \We thus
obtain <4

70 = LA~ 100 SR < vy -

The successive derivativgs ‘of the lunction may be obtained

by the use of the differential caleulus in the following way.
Differentiating (1), we obtain

, N2 -1 32% - Gz 4. 2
wf' (i + ) ~ Y58+ e AN
“ 4% — 1852 4 92, _ G,,.
\& +_.——__4_T —— =AY +. ..
Also 507

"NV X 3
‘zix’{u’ +aw) =AY (a) + {z~1) A3a) + 62 — 11_‘;‘?'_+_1_ : AYlw) +. . .

:.,ir;éifnd S0 on for derivatives of higher order.
)7 Pubting =0 in thig gef of equations, we obtain the results
N\ ’ -- -

W) = Ala) - 1A¥(a) 4 BAY) - 30%(w) 1 185/1a)

. . —- E’_Aﬁf(g) +. ..
e~ AR~ M7la) + 130Y10) — 5 A7) 4 135mne)
W) = A(a) - 3 Ak FRAO) ~ 300/ (a) 4,

W {n) = Atla) - 24857(a) 4 A8 @) .
) = Do) - 5ASHay 1.
W {a) = Aa) ~. . .
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Fu—-—To fiad the first and second. derivatives of log, @ at x=500,

o log, o A, A2, A3, A
300 6-214608
19803
510 6234411 -385
19418 13
576 6-253829 - 870 -1
19048 14
530 6-972877 — 338 -1 N\
18692 13 .
540 6:201569 - 343 AN
18349 o\ e
350 6-309518 A
Heie w=10 and )
10£(500) = 6-019803 + 1{0-000385) + 1(0- 00001 y&»
=0-020001. '\
Alse 10077(500) = — 0-000385 ~ 0-000015 —-}- 10\090001)
= — 0000401, ¢ (

Fegleciing the lagt figure, which is liable to ermf,a-'e obtain the results
J(500)=0-002008 e
F(00r= - &0600040

We may find the formnla for the.ﬁ%h Jerivative of & fanetion other-
wire, by using symbolic operators {md ex[umdulg the funetion flu 3w} by

Ta}lnr s Theorem.

Thus

m\

f’ww)é\ﬂa)—w OF F—f”a>+

If we dewote i} T,Q(E':Operatol‘ for differentiation, Ly I
di NS

m

equation (1)

hecones :‘{\;"}

wtD?  wBDP

\f.(u +u={1+uwD+ 50 + w,, ] TR
o & O (1 4 Afia) =e=2fla),
am\,, 14+ AT 2
'}ﬂmw logarithums of each side of this equation,
wh =log, (144}
=A_JAZ4+ AT
or wf (o) = D) — $4a) + $A%0) = &
Alsg w2DE= {Tog (1 + Ayle
—=(A— 142 _4_%33 LR
Therefore wBf () =(A - FAT+ P “
4

= ARfa) — A“ﬁ\a;) r}?;&f{ﬂ-)-h o
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and in general
@l ) = (A azy A8 Taty. Yo, )

36. The Derivatives of 3 Function expressed in Terms
-of Differences which are in the same Horizonisl Line.-—
By diflerentiating Stirling’s formula,

He+rw)=fla) + A ) + Affn - (IR A TS
+ é—&‘)(d‘}z - 12) %—[A?f(m -— ’Ie’.’) | A:f/(u — ZH‘)J \
+ @2 - 1A (o - Zw) )
rkan(e® — 17) (22 - 9 LAY (0 - 20y E¥ (o - 3y,
Friod(a® ~ 12) (a2 - LA (o — B\
vhe differential coeficients may be rcpreaﬁ{éﬁ&l by o rapidly
converging series in terms of the horizogtdl differencos.  Thus
wf’ (@ + zw) Y,
= HAA) + Afa - w)} + q;gﬂé}‘(r.c -0}
+4 (3332 — 1)21{A3f(65 - ?.;-‘} t—]‘ ﬁ?};‘{rg - 2-,1;;)}
+ i (da® - 22) A 2, 23%)
+rig{bat - 1%3332{16:‘4)%{&5‘;"(&1 =20 - A0 - B 4, L
WY (o + an) R \
= Ae — )+l {AY(q - W)+ A%a - 2uy
LB 2047, 9,
+5(2022 - 300) (A0 — 210) 4 Aofle— Bw)i v . . .
Puiting @ =Oyin these equakions, we have

wuf !('TLC% {Z’lf(a) + A~ 1)t~ 1L IAS (@~ o) + A3(o — 2ut
~E * 3o HAY 0 - 2u) + ASA(y - )i (D)
”7&(”‘{&) =A% - ) - e (@ - 2u) + FeldSAa -3+, .. (2)

S

:’:{[‘hese Bquations give the valye of the derivatives in terms of
-~ \\ “differences which are syminetrical ag regards the direction of
N/ inereasing and decreasing arguinents,

In order to extend these results to derivatives of higher
order we shall write Stirling's formula in the central-difference
uotation of § 20 as far ax differences of the cighth order.

e +aw) = o + Zpdug + Jas, 1 tafa? - 1) %9y + - La?(a? — 1) 8%
T ordor(a? - 1) {a? - 4) 8521, +- 7ho% (2% - 1) (2% — 4)58u,
Fadlmo(@® — 1) (a2 - 4) {2 - 97 %y
ot (0~ 1) (6 4) (2 gy
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When the righi-hand side is arranged according to ascending
powers of , we obtain

S+ waw) = g + @bty — §pd%g + ey — pioadTug)

T 1 s r I i
T @ {$ 8%y — 8%y T 1wt Yy — 11750 %)
+ @B (Fpdtug — srpPug + vl opd o)
A7 1 st 1_56, T
+ a3 Fpdtug — 147 T BT o8%tg)
i L_oh, L g 1 8, 18
+ 2y Py — whopdTty) + B (k8o ~ 2 e} (3)

If hoth sides of this equation are ditferentiated and we
substitute the value @ =0, we obtain the value of wf’(s) as M \J)
equation {1); and the higher derivatives of f{e) are formed &y
differentiating wf (o + aw), w?/” (¢ +aw), and so ol & N

The suceessive derivatives of fe) correct to di%kéhces of
the eichth order are given by the following equatidus :

wf () = pdug — 1By + Bty — lw gy

WP (6) = Saag — sty + <8 Ssh58%%,

(1) = Pty — Sy T

whfm(a) = g — 350U, + 2 1o

Wi} = Py — 3 8% : ’

wBF ) = 8wy — e
We see that wf'(s) is equalho the coefficient of z in (3) and,
in general, w”f ") ﬂgf’a}ua& to the coefficient of a n the
equation (3) ??LELHT;EIJ}@C} é;y @l This result might have becn
obtained at oncg, by comparing (3) with Taylor’s expansion
of fln + xu). P \%

37. To eXpress the Derivatives of 2 Function in Terms
of its D"s{idéd Differences.— We shall first find the derivative
of o funetion f{w) for the particular yalue o, of the argument @
1”13 ;teiflﬁs of its divided differences. As shown at equation (3}

$§ 13, we may write
Sl ag) = flag &) -+ (- tt9)/1 (ao‘al,rzg) + [ — ty) (u — ﬂ-zlf(ﬂg,ff-l;ae,a'a)
oot {m—a)(u-og) (4 — ) B -+ o s

where the divided differences of order ‘beyond the nth are
supposed negligible. If we pub u =t W8 have
Herg, ag) =Flotg, a3) + (g~ y)f{dign oy ta)

+ {15 = ) g = )/ {0y > P2 ag) +- - -
+ - lop—aa) - - - (7~ - 1fth T - -

o ta)- (1)
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e A\ W
\\ N/

66 THE CALCULUS OF OBSERVATIONS

Butin § 16 we found that
A0) =100) + (= 4o, 20) + (1 — g}, 1y 1)

+ (15— et)3f (g, ety 1ty 1g) +. . .
and by Taylov's expansion,
v R
Hu) =Fflag) + (v - ol (@) + (14— (,O)Wf é’.’ﬂ) A {a = e %_) +. ..
80 that 7'{cg) = g, ag), 3/ (ag) = f{tty, g, o o i in .{___fl.,']lt‘.]f‘al\
S Nao)fn l=flag, ay, - . ., ap), .
which gives the nth derivative in terms of the dm\hﬂr dllfcr-
ence of the nth order with repeated arguments. O

Equation (1) thus becomes A
I ) :f(%-‘ﬁ) + (g - ) gty trg) + (g~ a M‘{u\— o)1 (et (1 autty)
Tt (@ -ag)(ag-a,) Ay — e Ml g, <), (D)
which g“«eSj “(y) in terms of its succh\nL divided diffirences.
Az 8 special ease ol this ['ormuh when\f— thg + 1, :;2 =tig - diy ele

D} _‘}‘f(a'l] + ( 'UJ} ‘—\zf\ao) +‘{. i ’“’}f — 2uj z'g ] QA f fUa’

or witg) = cﬁf{an) = %&%f{a,o) + AR L
which is the formula of § 30' N

A more general oxprL5810n for the derivatives of 1 function
In terms of its ~dﬁldud differences may be oltained from
Newton’s for u:@, Y
S} =Fng) @ = a0ty 1) +{@ = wgl(w ~ aag, oy, ,)

D" - a0 e g )+
Deerng the factor (- 0, by «,, this equation hecomes
ﬂiaf o) + %f(%, ) + gy flag, ty, ay) + egquyg f{ttg, 1y, (o, tlg)

+ o hagrag Lo Gy 1f(%s gy o o oy 1 ) (3)

Sy =r (2, ) + + (g + )}/ (ttg, 2y, et,)
+ {ugoy + aga, - i) flg, g, g, ) +. . . (4)
S (@)/2 b=Aay, ay, o o) + + {ag -+ a1+ ap)/(ety, ys (g, fig)
+ (“0“1 + gy + agug + Oty - gy r12<13)j(a0, thys o g, *""rl) tooe
fm(x)."rg L= flay, fy Gy, fry)
(oot oy + oyt ax)f{ag, @y, ag, ag, a)+. . . (5)
I z)/4i= e, &gy g, thy, 1)

and so onT Coteara, + ‘3t a)flug, @y, ay, 05, @y, a) 4. . . (6)
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1u thege equations the coefficienl of the divided differences of order r
¢ o eynuuetrie [onetion of the quantities og @), 0y + 0 o %y In
equatint (3) Lhie coeflicient is of » dimensions, and afier each differentia-
tion ie dimensions decrcase by unity; so we see, therefore, that the
eoetticiont of fisg, @y, « « » @) in the equation for Flizyfrl is unity
(i.6 zevo dimension in ag @3, « » 4 Ge_g) and all differences of lower
oriler vaiieh,
NPPIoRE tlg= () = Uy ={tg==. . .=y, W6 obtain the values given
above : Fing =Fflag, tol g = 2flag g gl and so on,

Substituiing in equation {4) the value z=ug, we obtain cquation (2, « N
namely,

4 N ’
. Z ‘\“ AN
i) == Fitgy o) (g — q)f gy gy 0g) (g — 80} (%0 = tegiflag g, iz, g "{ ) M
The latier equation is used when the derivative of a aingl\ﬂaz’g]ue of
the funetirm is required ; but when the derivatives of several values of
n . . 2 £
the lwlion are to be compuied, we use cquation (4} WK™

From the following lable of welues compube heNhird and fourth
of f(f) when the qygument 8 has ihex»a@lues 5, 14, and 23
:Lap, A

¢ g 4 9 13 18\Y 2l 29
fi6) 57 1345 66340 409052 1118209 4287844 21342820

e fest form a table of divided .Li’iﬁ;i“ences:

6. £16). N\
= 2 LY ¥
g"\\\ 644
4= 4 18484 W 1765
,\\ 129909 558
tg= & 66340 7881 45
PN\ 83928 1186 o 1
ty=13 402052 22113
e\ 238719 2974 ]
hy= 1f~‘~\\~' 1118209 49401 i 89
R\ 633927 4054
5z 3T 4287844 114265

~\J 2119372
Nl =29 212426820

The function is evidently a polynomial of the Hth degree.
Taln L]_a,t.ing the waluee of s @y Boy v v we find

6=5 g=14 g=23
g 3 12 21
€y 1 10 19
oy -~ 4 b 14
ay . & | 12
U, ~ 11 -2 :
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From equation (5) we Lave at ouce

77 (6) =556 + (mg + oy + a1y + )45 S
-+ (aual + fgtte + Tty + gty - yitg o- thyity 4 il tgthy r13r44JT_,

50 FBI=1626, FU(14)=12 102, f7231= 10 a0

From equation (6) we Lave

7o )= 48 (g0 + ‘gt iy gl O
s Fre=624, frO49=1704, Srps=2ia O
N
N/

N
Examries on Cuarran LN

¢ &
1. The logs of the nunihers 400, 410, <12-0,\433§} 240 Liing given o
seven places of decimaly, find the logs of e Mlegers lawem 400
and 410, A\

4 ‘\
log 400 =2-6020400
log 410 =2%18753y
log 420 ="2:8232493
log 42602 2-6334685
log 440%= 2-6434527

2 H AT, is the last nalﬁzero difference of the original scitence, so
that AT =0, A"f{T[,:O, -« show that the formulse for sub-

tabulation aee S
1 \J
5 1 i N/
Aty = Ty Tok

A7 Ly ?‘*:;;*ri'—‘lm "y T D (1 - m')NTo,

Y e
4
i ’;}};’: _1_ ;ﬁ'r_ 2‘1‘0 n {J_-— ﬂ (]'__E)."_\’ ]T
A e B Gapr L 0
‘\
a I ’ 12
AN + ff;%“_“ ) {1 — 2m) . (r—2)fr =3} (1 —m)?) AT,
\J t 2 3.m? St J

The differences of gpder hi
are, of conrse, all gero,

3. The following

gher fhau the 1L in the new e[ UETee

are three consecutive quinguennial sims
44133, 41521 and 39387,

* Mouton, an astronomer of Lyons, in 1670 noliced that if in a gequenee
whose rth differences are constant, say =, intermediate terms are inserted
eorresponding to a division of euch §

nterval of the argument into ws equal parts
then the new sequence has itz rik diilerence constant and egual to gfm
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Find the value of the quantity for the middle year of the second
quingienmium.
4, The populations for four consecutive age groups are given by the
table of valurs
Age Graup. Popdation.
25 10 89 years {inchisive 4h8hT2

)
20 to A4 years [, 441424
35 to 39 years{ ,, ) 423123 A
40 to 44 years {  ,, ) 402918 \
2 &

Estimnate the populations of ages between 32 and 33 years, and bet“oen& )
37 and 28 yearz respectively. \"}

5. Rlow that if
W=t thp+e v o+ U q '\\‘
AS
and i peneral p
Wo=tpq F e+ o - F i —1))\\.,

= T
then the individual valoe a,, may be [onnd from thc gronps of ¢ indi-
vidual valnes Wy, Wy, Wy, . . and their rhi‘fe;oncea by the formula

»~,
- 2

\‘; ER 2 AN —_ _ gl é__“o
Vs = ; |2T-—f-i J)tz’)l {3: -E&f‘(l 2&)-!—(1 3t + 215 Tk

where third differences are negkzrfed *

6. In ile foﬂomnrr s tsQl" data % is the height above sea-level, p the

baronetrie Tressire. 1}.5,te by a difference table the height at which
=20 and the ]Jre:nni'g when h=5280.
P .~\é?53 4763 6942 10593
2=39 \~' 27 26 23 20

7. F \‘a’ dlﬁ'ei ance lable from the following steam data, where p is
PFf’Swm’e\ul Ibs. per squarc inch.

¢ \8‘9 (! 930 96-2 100-¢ 104-2 1087
\w\’" 1138 1280 1evo 1707 1991
Calonlate p when §=199°1 and determine Ly inverse in
temperaiure at which p=15.
8. Caleulate the real root of the eguation

Wdra-3=0

terpolation the

by inverse interpoiation.

* . IL. Forsyth, Quarterly Publications of the Amerisen Statistiond Asoocie:

ton, Deveraber 1918,
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4. Find the differential ecefficient of log, ¢ at #== 300, given the tahle

of values
.
300
301
302
203
S04
A
306
307

Lo, .
103782474656
SFOT1L026474G
-710427017375
713782805600
F1F02T 701406
F20311776607 N
723585101953
ST2684T747087

e @A

L Qv

[, g

&%

Find from the above fable the ditferential evefficient of log, » a‘{m: 302,

10. Given the valunes

-ty
find the value of 2 when =0, o\
%

- g2
11, Find Z—;;‘ when z=1,

2 ,
' 1 ”“\\
# \;
2 \Q\
i3s
{...:45,,
AN
Ve il

7

~
1 i«i‘zpp]y the central-d

/N.’s
¥, ‘€24

858-313740ﬁﬁ;%
869645772308
880975826 766
892808004 583
903630006 875

N \ g

g’rfi'eii‘t-he following values:

¥
0-198669
G-285520
0380418
0-473425
0-5G4642
0-644217

iffercnee formulae of § 36 to eompute the

ﬁrg{ﬁml second derivatives of log, 304, having given the table of values

JEFx. 9,
N\"

N/ 13. From the following data eonupute the first four derivatives of the

function ¥ corresponding to the argument x= 11 ;

"

108 243 219
121 550 628
141 158 164
163 047 364
174 900 £28
214 358 8§84



CHAPTER V

DI ERMINANTS AND LINEAR EQUATIONS ,’\“\'

- o
38, The Numerical Computation of Determinants-—=
In this chapi.v we shall consider the problem of fipding) the

numerieal value ol a deferminant, say, A\ g
Ty gy ttg | O
by by B B B[O
| 1 1 3 % 4
| 6 Cz €3 IFEEN (4}
dy dy  ds \Jdg
: o
i €1 £a &3 s:'gg £s

when the elements aq, @2, . - 3.1'3 given pumbers. The method
generally adopted, which jsdue to Chid,* is as follows:

7

We first notice whethet any element iz equal o onity; if

not, we prepare the ;}sl\fminani; for our subsequent opera,tionﬂ
by multiplying sofad row or column by guch a number p as
will make one/ofthe elements unity, and put 1/p as a factor
outside the @8términant, This unit element will henceforth
be calledﬁ“e\/ piroled element. Thus in the above determinant
we shall\sippose that 33— 1 and take by as the pivotal element.
Weshall show that the above Jeterminant i3 equul 20 the

\of?‘ge’-f'-'mina-né

(=1 oy < agh;  g—agby  a—Ceba @ a3bs
€y —¢aly €y —&gha CL— oshy s T ¢sbs (B)
dl - dabl (Zg - dgbg d4 - dgb4 dra - d;;bs |
I,el —eghy oy —eshy €GP &7 e5bs |
fﬁéﬁ:ri%-nil:ti‘ :}‘fg.ﬁf”{i.g e Tes fomelions conmaes sOUS 1 nom e pésuliantes 06 &8
; Turin {18633
71

N

Q)
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The law of formation of this new determinant (1%; may be
expressed thug: T%e row and column tntersecling in tie pivoted
dement of the original deferminant, say the xih vow wnd sth
column, are deleted ; then every element v is diminished by the
produst of the dements which stand where the eliinated row
and column are wmet by perpendiculars Jrom ¥, and the whole
determinant is multiplied by {—1)rts

The advantage gained by substituting the determinupB)
for the determinant (A} is that (D) is of order one il biver
then A; and therefore by repeated application of thiSJhethod
of reduction we ean reduce uny determinant fo the &;;P,omzf aider,
when its value may be written down at once, N

To prove this theorem, we firsy divide th’é}coliunns uf the
determinant (A) by 2, boy o, B respectively, so that il takes
the form

Z’l bg 3)4 b5 : .(t-l Gy o~ s iy

) .
¢ \ W VL e _4 £5
P \ [ bl 62 63 b4 bs |
since b4 then (stibtractiug the elements of the third column
frc‘;m:ﬁl}d&e in the other colum:ns) we write the determinani in

NS
thefor
}\\io m
W\
{51 by by By o s _q_g__(r o a4y ¢y
B A I Rl
0 0 1 ] 0
161 g fa ] |
%, 3 —2 — &g Oy b: =&y _Z)s ~ g
. d. d, 7
~dy g g, fe_g &
By b T BT g b
& £y €4 5
b € Z'); — €3 3 54' — g 35 - f3
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This detevininant may now be written

=122 Dy By By bs | e ¢
( ) LR = — —2—ﬂ3 7 =l %—as
b.l ?72 54 55
] a g 5
— — ™ = fid — = —_—
By 3 by B 3 B C3
{Z‘l f?g d4 o,
&=l — —d, == = —d,
bl 3 F}z 8 ?34 bﬁ 8
&y €g €4 5
- — Ff3 €3 — — & — = £
by B A ] B
s . . ¢\
which 13 chviously equivalent to the form (B). AN
It is usually advisable to prepare the determinant for comput,men by
forming zevo elements in the row and eolummn containing the\pivotal

elonient.  Fur example, in the determinant (A} of Ex. 1 {Lelow, zero
elements iy be infroduced fnto the first row by adding ¥hiee times the
third cohoun to the fest column o form the new figeg column ; then
adding the third volumn to the second column to xfo@lf the new socond
solumm, smil vy on,  In this way the subsequent colérdations are simplified.

In 11e1.u".1111g the computation of a deTermma.ut it will be found
convenient o diaw pencil lines through ifho row and column which
intersect in the pivotal clemont; ths diglps the cye in finding the
elemionts 2t the feat of the perpendulﬂaw ’

Instead of first dividing some mw bor column in order to obfain a
ph ofal eleinent equal to unity, wésbiay climinate the row and column
in any element (no{Tecessarily unity) as follows: Delete the
row and colunm in guestion bw\dra.w ing pencil lines through them ; then
the rale is \.‘

product of clements at feet of perpendiculars
elemnent uf Tntersection of pencil lines

the new datr; ??Hﬂ’f*?i} 581??{; multiplied by the cement at the infersection

of the pencil [ and by the fuctor (— 1)*s, where v and s denote the

numbers of \la Seletod row and column respectively.

Now element == gld e?rz'rr;mé -

Thes ub\ov\ method of comyputing the value of & Jeterminant
enahles us at the same time to compute the co-factors of the
Ti’taent\ corresponding to the surviving elements; for these
co-factors are actnally equal to the co-factors of the correspond-
ing elements v the reduced determinant.

Fax example, the vo-factor of ¢ in determinant {A) is
ﬂz C!-B (f-4 aﬁ |
by by by B |
; d2 (33 a’4 dﬁ i
fa  f % & |
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whichy, since by =1, is equal lo

g —tghy @y —aghy oy — ttehe I

dy—dghy  dy=dibg  dy—dyy |
|ty — 3y ey — 3l &5 — eghy

the latter determinaut being the co-factor of frg—egdy which iz the
element {n the reduced determinant (B) corresponding to ep in (A%

Ex. 1.—Evaluate
3 1 -1 2 1 O
- 5 1 4 3 ‘ A
1 4 2 3 1 0 @
5 -2 -3 5 _1: O
-1 1 2 3 2 ad

.. ' 4 ‘.‘
!
We may select ag pivotal eloment the number 37 Q:h' the interrcetion

of the first row and the Gfth columnn 3 the rule thc;rréives
N

i 3 1 -1 2 Li=(=1 —1x\ > 0 4 =4
-z 8 1 3 | e’ 3 3 1
N - T A8 -1 -1
B -2 -3 5 11 N e
ST TR

N
. - ol - - - :
Taking as mew pivolal elomeninghe unit ut the interseetion of the
second row and Jast eolumn, Wcjobta.in

S

(- 1)5+6 | =% 8 10 il
N 22 — 3 — 25| (Y
PR D 2 7 K

¢ N/

As there ig ﬁ%@& no unit clement in this delerminani, we may
divide the secand column by 2 and so forrn u unit pivotal element. The
determinan t-:bt}bfﬁrl es

2N

M\ .21 15 3 10
y\ :
AN\ l 22 —11 -2
v/ -9 1 7
O
AN =2 (=151 1 _11! .
RN . | (D)
NN - 77 52 |
\\) N/ =446, the required value.

If iy were tequired to delermine (he co-factor of {say) the element
in the fowrth row and first eolumn of the alove determinant, we
should have the co-fastor of § in (A} vqual to the co-fuetor of &, ihe
corresponding element in the redueed determinant (D)

=the eo-factor of 22 in the next redneed determinant (C)
=the co-factor of — 77 in (DY

= — 23,

Hx. 2 Fyaluate the determinas

five:

ot for ihe Legendre wpolynominl of order
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1z 1 0
Ps'i”')za' 1 3z 2
Q 2 a

0 0 3

4] 0 4]

We oliminate the fourth row and fifth
clement al the intersection of theze lines

=T
o

0]
0
3
Tz
4 9
column, noting that the
becomes a factor of the

K A o N o e

i

deferminant,  Thus
&l P‘-)Iii_'-}ﬁ -4 3 1 0 0
1 3z 2 0 -
0 2 5 3 PO
o o 27y A 3;1\.
. T 7 \?
(climinating the 1st row and 2nd col.)= 4| 1 -3 2 N\D
-2z drg™ R
0 27NN ° 638
P
(slninating the 1st row and 2nd colj= —81 15 AQ qg 3
RN ! '
’\z“i&;{_ oz 4 637
N8 8 4

Ho we have Pyfzy=1(63:% _70#+ 1
59. The Solution of a System of

5%).

Linear Equations.—

Being now in a position to«fdinpute the numerical value of a
determinant, we can solwe a set of linear equations in any

anmber of nnknowns, x:uwii\}g, Ty, . -

73
1 1\4.&'12 Xa+. .
Oy ©1+ (lon Xp +. .

R AT
. T oy

N\ W

X . -
Ny B F oy e

oy By BAY

Tn=10 )
&y =G

ot gy By = cn-'

by the fpr\h'@hfa:e which are proved in works on deferminants,

name] \,

S e g o g J(lﬂ-n £y fhyg . .« Oy
..\‘:":" €y flgg fag . .« fon fop Gp flag « o . fzy
~\J . e e e

S T L T R Gtz - -+ Qan
1_‘ flay ftyg ths - - - g b Tfgg e fhs o o o g

| floy flgn flag . . - oy i ffay flog flpg - . . flay

‘ Ol Bag hpg « « o G thl tlag Bng + « « Tonn

and similar exprossions for @, @, - -

* Furthor remarks and examples
found in Chapter IX. in conneetion
in the Method of Least Squares,

o ¥
w» Ly

an Lhe solution of lnear equalions will hs
with the solntion of the ¥ normal equations
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Bgo—Find the values of @, y, 5, w that sutlsfy the system of sqralivns:

Oz + 3y 4+ 424+ 2= 28
At ba—4dw=12]
¥4+ 24+ w= b5
Gr— y+3w=1y

We have at once

28 3 4 2
12 0 -4 ) {\
5 1 1 1 \
i1 0l -ame ’.\{L\
A TR 4 2|7 2207 P (Y
O
3 0 5o— 4 AL
0 i 1 1 ,\Q 3
R | 0 3 K?,
9 28 4 2 {Q
__1]s 12 5 -4 &14_ "2
TR 501 LEYayT T
6 19 0 \.\%\"
and in the same way we oblain the valfeh =4, w=3.
L&
&N
™

- N
]LXM{PLF@ 0N CHAPIER V
Tvaluate 1he detern('@umts

[

AN ) .
Wiz 4 3.8 o B 1 3 0o
23 BANDS 3 -1 2z 3 o0 0
't 0 oM 1 2 L0 -1 2 3 90
R T 0 s 6 0 -1 3 3
2 INY ¢ 4 1| 0 4] 0 -1 gt
t'\\wl )
¢ & iz 1 0 0 0
u | 2 1 1 o 0
K
\\5\ 4 1 2 1 0
Q‘: 5 I 3 i 1
J 6 & 4 I 9
2. Show that the determinani, )
2 1 0o 9 g g 3
2t 5 1T ¢ a0 g .
¢ -3 7 1 0 9 . !
60 42 g 1 i} -
- L . i

with (n - 13 rows, is equal to L
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3, Compute the values of

(@3 1 0 (RN S A | 8 5
¢ & 1 0 5 4 3 0 2
1 & L 1 0 30 1 g
1 + % L 1 0 6 5 3
2 1 o 2 0
Mir 2 8 4 5 6]
2 3 4 5 6 1
s 4 5 €6 1 2
P4 5 8 1 2z 3 . \{\
5 4 1 2 3 4 \
P 6 1 2 3 4 5 <>s
_ A\
4, Verify the relation % g.}
ga=i 1 1 0 0 0 (n+ 1) 10w, §
-1 1 1 0 o ; ¢f0
T S T R \\/\
-1 1 3 3 1 . 1\\
i1 1 4 6 4 i)

3 : 5 N
| : O
. . IR
thie constituents being binomial eocflicicnts, whénm— 2,3, 4, ..

5. Bolve determinantally the followi 111;2 fcm}of cquations :

{) .s+2u—"§\ “3@]
B4 1#4—\ = dp |
Yy A Tw=0g '

24 % — w=0
) <\— st = 10
‘_\K‘i:,— ii"af' '—14]

1
X 's-—- Oy + 842+10T4—- 3_%
QOB 20— 1304 sp= - ;J
»{gd)-[—si..cz-l- Bx+ 2J4+ difg e= 1
OV
Sl
»
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CHAPTER VI O
NS “
THE XNUMERICAL SOLUTION OF ALGERRALG A%D
TEANSCENDENTAL EQUATIONS.& )

40. Introduction.——In the present chaﬁhér we shzll show
how o find the value of an unknown QuARbity whick satisfies
some given algebraical or transcqnjd}ntal equation ; or the
values of several unknown quantibies which sablsly o set of
given equations, equal in number to the number of the
unknowns. o

The methods in use may\be classified as follows -

(o) Literal methods, i which the solution is obtained as a
general formula, sp/tha nothing remains bus to substitute
-numerical valueg»‘"h} the formula; ag, for example, the solution
of the qua.drabig\ééiﬁation @’ +2bz+¢=0 by the formula

o em-buvEL

Th ’e:,.’\]iteral solutions are valuable when they can be
obt@iﬁi%,* bub in most of the cases we shall have to discuss,
théy are unattainable, at any rate in a form involving only
fl‘a finite number of arithmetios] operationg,

(B Numerical op camputer’'s methods, in which the working
is mainly arithmetical from the beginning. These are, on the
whole, the mogt ugeful, partienlarly when a high degree of
aceuracy is required, and they constitute the main topic of
the preseni chapter,

(v} Graphical methods, in which the solution is obtained
by drawing diagrams.  These are much used when a rough

* The solulion of the snbie diseussed in
proved in § 60, are examples of literal aglut

78

§ 02 below, and the general formula
tons,
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soiation is all that is required or as a preparation for a more
accurate solution by numerical methods, but for many purposes
they have been superseded by the

(8} Nomographie methods, in which a diagram is prepared
ence for all to serve for a wide class of cases, so that it may
be used over and over again with different numerical data.

(e} Mechandcul methods, in which some mechanical arrange-
ment iz applied; many ingenious machines have been de-
vised for the purpose of sclving different equations, but on

aceovut of their cost and complexity they have not come inte)

K '\
extensive use. \

41. The Pre-Newtonian Period.—A method for™#he ex-
traciion of the sguare and cube roots of numbers, diéit by digit,
was discovered by the Hindu tathematicians( and by them
comnunicated to the Arabs, who t-ransnﬁtteQ 1t 'to Europe,

This method was extended by Vieta/in“"1600* so as to
frrnish the roots of algebraic equatiorms in general. The
process was 80 laborious that a se‘v}jﬁteenth-century mathe-
matizian desceribed it as WDIlb,I’ljl:’cﬁt for a Christian,” ¥ but
it was in general use from 1605w 1680.

In 1674 a method depéitding on a new principle, the
principle of iferation, mas communicated in a letter from
xregory to Collins;3{(and independently, & few months later,
in a letter from Mithacl Dary to Newton.§ This principle we
shall now discusgh)

42. The Prjuciple of Iteration.—As a first illustration
of the pribtaple of iteration we shall consider an algorithmn
81_1ggesﬁ’e{i~ v Newton || for the determination of sguare roots,
which\may be described as follows:

~Fel N be the number whose square root is reguived. Teke
Uy number xy and Jfrom it form @y according to the egﬂﬂ-f%:fm
T =40+ Nim). From z form 2, according to the equelion
By = 3wy + Nfz).  From z, form z; according fo the equation

* De nizmerosd potestatum adfectnrum vesofutions, 1600,

T Warner in Rigaud’s Corvespondence af Seieniific Men of the 17th Century,
1, . 248,

I Rigand's Correspomidence, 2, p. 265 ]

§ Rigand, op. cit. 2, p. 865. Vor an account of Dary see Rigand, 1, .

[ Op. cit. 2, p, 372.

204.

Q!
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2= Ma+ Nfms), and s0 on. Then the sequemce of wumbers
Wy, B4, Fa, Ta, - . -, Londs to o femit whickh is JN.

Thus, taking N =10 and z;=1, we have
s=5(1+ 10}—0 5,
Zp= (b .J+10I,|o 5):%('
3= 14037 +10/37) = }(3-
2y=3{3-24 10/3 2)=43(3
. t5=1(3:163 + 10/3-163) =
‘ ze= 1(3-1622775 + 10/3-1
: =3-1622777,
j which iz the sgquare root of 10, eorrectly to seven decimal :fhwe“-'

In order fo prove the validity of the pr ocess\, e proseed ag

pl

10+

24 3 125} = 3163,
1{3-163 + 3-1615655)=3- 1(‘2'27'?3,
622 5\—%{3 1623775‘1‘3) 103 Ni )

follows; &N
The equation T =3z 1+ N /wp 1{ !
may be written )

- VN _ -’”p—l‘w’N.)”
tp+ N G JN
whenee we have \

JN'“ o — ,JN>( 2")
mﬂ,+ ,J\T (xo + N
From this equatlop it is evident that if *

% <1, then Lt,_._z,= JN; (1)

‘l

it \Tﬂ: N
..ﬂ:.’ z,+ JN

Phgdimiting case is when

>1, then Y, . @,= ~ JN. (2)

\'\“ |#a— VN |=|m+ JN].
A Tf we write wo=re?, N =Xe,
N A" this becomes
M\:\" | 7 cos 8 — X2 cos Lo+ 7 sin 6 - sX4 sin fol
) 3

=17 cos 8 + X} cos Ja + 47 sin § +4X¢ sin Je |,
or, squaring both sides,

724+ X = 20X cos (8 - o) =42+ X + 2rX3 cos {8 — Lo),

80 cos (¢ — o) =0,

or 0= -£90°+ fa,

which is the equation of a straight line through the origin in
G

is a complex number, say equal to q;..;_:u,\f:i, where  and » ave real
numbers, then o/ {424+ is denoted by |z| and is ealled the medulus of 2
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the plane of the complex variable a, perpendicular fo the line
joining the points N and ~ (N. Denoting this line by !,
we regard it as dividing the plane into two half-planes; and
we see from (1) and (2) above that the elgorithm leads o the
valwe JN, as long as the inttial nwmber @ is luken in that
half of the plune which conteins YN ; and the algorithmn lends
1o the value — JN, s long as x s loken tn that holf-plane
which contwins — JN.  If @y ts taken exacily on the line I, the
SEGULNCE Ty, By, T, - « -, Q065 7OL tend o o fmad® X

2 A

A pleasing characteristic of iteralive processes may be obseryedh i
eonmestion with {his example, namely, that a mistake in the performance
of the nmnerical work dees not invalidate the wlhole caleulation, “Tf, for
exnmiple, a mistake were made in caleulating =y from x,, #hederronecus
valite x, oblained might have been ohtained correctly, iR starting from
a different value @y ; and sinee z, is 1o be takensaghittarily, the true
sobution may be reached by way of ) as well ay Ly way of =, The
correct result 15 obtained whenever the numbers B "sp g, Frog » - - 1€
nhviously. tending to & limit, however manyeleots may bave boen com-
miifted in obtaining these nurbers. Thys tva.luable feature of iterative
ruethods has made them very popnlar. R )

43, Geometrical Interpretation of Iteration.—The nature
of iterative methods may rcadily be illustrated T geometrically.
Let f{x) =0 be the cqualiou. Write it in the form fi{w) =/2(%),
a3 may usually be doge)n many ways; thus, if the equation 33
2R~ 8rra=0, we\{}aii take fi{z)= 32" Falw) =8z -a. Draw
the curves y =f{z)and ¥ =folx); the real roots of f{z) =0 are
evidently tha $Hscissae of the points of intersection of these
two curw'e&i,\’"An iferative process for finding them may be
dovised AgHollows : select any point %o on the axis of @ so that
the walle of a, is nearly equal to that of the abscissa of one of
thespoints of intersection of the curves. From m, draw a

<‘S;tr€iight line parallel to the axis of y until it meets the curve
which hag the slope of lesser magnitude. Suppose, for example,
when =z, that | £i'(@)] < /2 ®) and that the line € =% mefats
the eurve y = f3(x) at the point (%o, ¥). FErom this second polpt
draw a line parallel to the axis of @ antil it meets ¥ =ja(®) ;M
the point (z,, 7). From the third point draw a line paralle] to

pative solutions of guadratic equations and thelr

* Yor further work om ite : tt
) tti, Zend. 41 Palermoe, a2 (1917), p- 73

connection with geometry ef. O. Nicole
% CL R. Ross, Neiure, 78 (1908}, p. 063.
(D311} .
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the axis of 7 until it meets the curve A{E) =y in {ay, 1), and
from this fourth point a line parallel to the axis ol .~ nad so on,

/

/

¢‘~:’§ I
@)
A
4 '\\./ X

. “&{' Fia, 7.

. \9 L

Then the abscigsg of the first and Second points is @, that of the

third and fourth points is #;, and‘in general z, approaches nearer
\ N

X=X x
Frg. 6,

NS

N3
Q
7
L\
N
£ »
Vo Oud
\¥/
L >
{ L
NV
N/ e B L 4
O '

Frg, 5.
to the point of intersectio
values of n; de, x,

There are two

n of the two curves for inoreasing
converges fo a root of the original equation.
main types of diagram resulting from this
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provess according as the slopes of the two eurves have the same
or ditfferent signs for the abscissac wy, @, @, . . .

In Fig 6 the abscissae uy, oy 25 .
ot » and the lines appmach the point of intersection of the curves
farm of a “etaiccase.”

the

in il

savtiien spivally.,

ohpckife #igns,

. are all on the same side of

In Fig. 7 the lines approach the inler-
The stairewss solution is oblained when the derivaiives
of he curves fila), ff#) have the samo sign near the point of inter-
section and the spiral solntion oecurs when those derivaiives bave

B 1.—To find the real vools of the equation
g —w—02=0.

0.3

Vor the positive rook

T—T)rﬁ
= 1006
iy = 14087
wy= 10434
= 1+0445
g =1-04472

..\""
y= 02+m \;
T30
=123y

yg= 152434
Y i 2445

M= 124472

(The root is =~:‘].$0~i‘47616‘)

For the larger negative root \"

N\ \

L 7™

& 209423
Z _(-04214
5= — 094210

«ad
Y
g NG

(The root i %

Tarvthe smaller negative root

A -

=

Ez 2 —Find, corvectly lo five dectmal places, the voot of the equalion

by tterating the formuls py =0

y—02
— 0000
—0-200
— (-20032

| '.I,I--OE +x
= — 800
= —0758
yg= — 07456
= — Q-T430
yy= — 07423
yy= — 074214

= —0-54208.)

y=na"

o= — 0000

yy= — 0-00082
Y= — 0-0003225

(Correctly to five places)

y+ loggy =05

5 — Lot

4
Ns

A

real rooly are the three intersections of the curves y= $"”and
as shown in Fig. &
can iterate to cach of the three roots as follows:

x:/.
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By inspeetion of & log talle we see thal o= 68 s an upproximate

value of the root.  So we take
Y= 05 — logp0-68 = 06675,
=05 — log ;06675 =0-G7id,

As the iteration evidently furnishes values alteinatel ¥ Juss wniel greater
than the root, we take (1 +ua}f2 or O-GTI6 as 1ho next wprreximation
¥y and then we have

g =05 — log,,0-6716 = 0-6729,

Take Yg = (U g }fT=0-6723, O
#e =05 —lom 0-GT23 =0-672437, A\ ¢
Yy =003 —log 0-672437 = 0-G7234 7. <\
Take Yy = (Y )2 = 0672303, )

g =08 ~log,;0-672504 = 0-67237Y, PA
Yo the mean of the last two values = 04572385,
1= 05 ~ Log, 0-672385 = 0-672352. ‘O
The root, correcily to five decimal places, is O:BT235.
Bz 3. —Find {using only Barlow’s table wf deubes) the smulier nositdes
root of D
33— 25 L Q).

\

44. The Newton-Raphson Method.—1It is evident (hut in
iterating fowards any Toute 8 are not hound to procsed by

<
N

\
¥ “)s: =3

Frz 9,

rectangalar steps, as we have done in the preceding article; we
might just as well have proceeded by oblique steps, as in the
following method ' '

Let Q0 be an are of o ourve y = flz), intersceting the axis
of #at A 86 that the abscissa of A ig g root of the oquation
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Se) = 0. Suppose thal the are AD is convex to the axis of «,
anil that I' Is & point on this are with abscissa = At P draw
a tanginb fo the curve meeting the axis of 2 in M and led
OM =z, Let @ be the point on the curve whose abseissa 1s a7,
aml at @} draw a tangenb to meeb the axis of ¢ in N'; write
ON =, Let R be the point on the curve whose abscissa is a,
aud similarly at B draw a tangent to the curve fo meet the axis
of &. 1t is evident that the points L, M, N, . . ., tend to A, or,

in wiher words, the values @y, @, %2, %3, . . ., fOrm a sequence,

tending fo the root of the equation f(z)=0. If, however, P
gtart on the other side of A, where the curve Is concave j;g the
axie of  ab Qq say, the first step of this metliod cafsies us
to the other side of A, where the are of the curve izleénvex to
the axis of ¢, after which the sequence tendssfuihe root as
before, AL
- X'\
Now we have v
@ — ¥y = ML =LP cot PML fj{%)/f’(:ﬂg),

80 @ = 2o — flo) [0}
and In general Dpy1=Tp—J (:ﬁ,}{f(x,,) (1j

The process is therefore an"jtél{éftion based on the equation (1}.
In substantially this form &b Wwas given by Raphson® in 1690;
but the method is coml@nly called Newton's, because Newton
had previously T suggested a nearly related process.t

The preceding difehssion iz really based on two assumptions :

1, That the glope of the enrve does not become zero along the are
4P ; i that fhidequation f(z)=0 has 1o root helween vy and g, the
alicissae of \Quand P.

2. Thaf $he curve has no point of inflexion along QP

Thetwals of Newlon becomes more precise if we make use of the
ohser¥aiton that we ean determine which of the two abseissae #g and 7

T’?ﬁtgs'[)onds to the part of the curve which is convex towards t!w T-OXIS
&n the condition that at points where the ewrve y=Fis) 15 conves
towards the axis of @, we have the relalion

felf ) > 0.

* dnalysis dequationum Universalis, Londoen (1690}

T Wallis' 4igebra (1685), p. 338. ) .

T The difference buelween Newton's process and Raphsen's is 1‘hat I\?wtun
caleulated a set of sucecssive equations, whese roots were the snecessive residuals
between the above quantities s, and the irue value of the root,
Raphson’s form of the process Lhis is unnecessary.

wilercas in

N
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Tence we sec that &f fiz) has only one roof helween two bovwds v, nd
&g while f'(a) amd f(x) are never nero between these bounds, thes the Newtons
Eaphson process will corfuinly succend o it le begin at that one of (he
bounds for which fiz} and f7(2) havs the swwe styn,

We might have derived Newtor's method by the aid of Taylors
Theorem as follows :

Let zp be an approximate value of a rool of the vruafion fa) =0,
Put =0+ p, where p is emall.  Then by Taylor’s Thenrens

O =flzg+p)=Fl2o) + pf (35) + tenns involvin g higher powers of g,

8o approximately we lave

— O\
p= = flzg{f(ay), LW
and therelore &= 3y = fleg)[f gy \”\
which is Newton's formula,* ¢ Y
Ex. L——FLet the equation be \\
9:3—2:<:—5=0_'f‘

Here it i3 obvious that an approximate aalute of the root is 3.

Taking wy—2, we have Q“‘\ -
2y Ly 1
1%~ == 2

Next RN

P o YR Joos1 2 5 Iy 846

2= ey = 2 T g =21 - 0:0054 (nearly) = 2:0846.

2.0048)  0-0005415505
Now f(’~' = SO 185
FRB946) T " Ti16z0p T 0000048517
80 NS 33 =2-084600000 ~ -G0004851 T
P, = 2-094551483.

rljhe;ﬁ’fiu‘il’ed root iz 2:094551 45 vorreetly to the first vine digits,  Wa
PostRoRe for the presont (of §50) the answer 1o the question, Low we

Kt the number of places o which our result Is correct.

al

NN e 2—Find corvectly to four decimal places the greatest root of
4\ Y4

O

g2y,

’*‘On the formulation of conditious under which Newtons method of ap-
proximation loads 1o a root of an equation cf, Cauchy, (Buvres, Ser, 2, 4, P 578
G- Paber, Journ. firr Math. 188 (1910), p, 1, v ’

T« Tht_a teason Teull wf - 9q - 50 4 celebrated equation is because it was the
one on which Wallis chanced to exhibit Newton’s method when he first published
it, in onsequence of which every numeriea] solver has fult hound in duty to
J:.na,ke it one of Lig examnples. Tnvent a numierical method, neglect to show how
1!: \.vorkﬁ on thia equation, and You are a pilyrim who does no?s come in al the
litile wicket {vide J. Bunyan),” {de Morgan to Whewell, 20th J anuary 18613
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En 3.—Find by Newton’s method, eorrectly to iz places of decimals, the
root of the equation
@ loge =4-7772393.

Frora a table of logarithms we have, by inspection, the values
6 log 8 =4-67 and 7 log;,7 = 5-82,
so we take as a first approximation 2, =6.
The next approximation is

8y =g — [ i-"-"-n);{fv ()

Now Fflag) =(6 x 0-77815) — 47772 = — 0-1083, A ¢
Flag— logrr + logge = 0778 + 0434 = 1212, LD
50 1/f (mg)=0-825 (ucarly), A\ \
an:l 7y = 6089, ‘
The next approximation is ‘"’:\\‘

mg =ty — Jlz){f (o) \
Now  fizg)=(6-089 x 0~7845460) — 477 72392 00001387,
¢

se 2y = 6:089 + (0-0001387 x 0-82ER\
or g == 6089114, which is correch fo six places.

45. An Alternative Procedite.— Instead of following
Newton’s rule strictly by forsing flze) and f'(#), ete, we may
proceed in a somewhat legs glaborate way as follows:

Suppose we have folind {graphically or otherwise) a first
approximation to %«j\rbot of the equation f{z)=0, which we
will call ;. Lefi z denote the required root of the equation
and put 79N

3

P\ @ =ay+35, (1)

where & .if(a.\éﬁlall quantity. We now gubstitute this value of
z in jsk\ké"ériginal equation, neglecting powers of & greater than
theslirst. We solve the simple equation in & so formed and
,.denote the value obtaived for & by & Then the second
\épproximation to the Toob # is o +8. Now denote ar+&
by og, and write
T =ug+ 8, (2)
and substitute this value of @ in the original equation. Pro-
ceeding as before, we find an approxinate value of the 8 of
equation (2); let it be &, 80 az -+ & is a third approximation to
the root ; then we denote ag+ 8 by us, and write
w=ag+E )
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and similarly for further operations,  7%e SCGUENCE 0y, 0y, 1 . ., by,
converges o the root & This procedure is essentially equivalont
to the Newton-Raphson process, as is evident from  the
connechion pointed out above bebween the Newbon. {aphson
process and Taylor’s Thoorem (§ 44),
LBx.—Find the voot of the equation
103 — w? = 3-1162644, N\
which 4s noar 003,
Ifa= 2y + 6 where § is small, we lave approximately PR
s=l6264 10 O
10 - 3a2 .

7
<

Put ¢, =03, {hen .\\
0-17326 0)

§=—g5r 5 =0-17326 x 0. 1027020- 017806,

The next approximation is ity = 0-3178,,’@&1:{1 which we liave
3 H1462044 — 0175 4 30068 _0-0003612
10 - 5% 0:Top 9697
=0000037,2¢45, o3
0 60317837 249,
The required oot of the .G(]TLifif.’iOLl is 0-3178372, correctly to seven Tlaces.

It may Le l’ema.l‘kedQ’hat the above weihod is theoretivally applicalle

to complex as well 2 Yo' real voots, but in the ease of complex roots the
rumerienl calenlatibns aro generally so laborious that other wnethods 1o
" be deseribed lader are preforable,

 §

46. Soluilen of Simultaneous Equations.— As o further ilnsiza-
tion of ,%g:mel‘-hod of the last seetion we shall find & solution of the
simulfguigtis equations,

\:‘,:‘ S (1)
"J\ By® i - Yy = 4, (2)

A V' We fiost trace the eurves represented by 1liese two equations.  In the

AN el squation we find, earresponding 1o given valnes of z, the following
\ / values of g
= 0 +1 >1 -1 -3 -3 —10-0
¥OF0TL 0 imaginury g1 F2-12 374 i,
and in the second equation similarly

¥ L 5 41 =41 -1 -9 -3
=2 —14 4.1 imaginary — 4.0 893 —15
+2 +24 +216 +4.93 1o

There iz evidently onty one real root of

the equations, represenied by
the point G in the diagrany,

From the diagram we see that the ordinate
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of (1 lies beiweey +0-7 avd +0-9.  Tniroducing the threc values y=0-7,
g= 03, 4= 0-0, ulo equations (1) aud {2), we ublain

. by (Th w by (2. THferenee

0-7 + 087 - 095 +1:42

0-8 — 0-65 — (G4 —0-01

0.9 — -85 018 —0-67,

so il it she fwo curves & were Lo vary proportionally to y we should

deduwes ihat ¥ would be near 0-799. If we now try the three values
\,

¥

A Troe. 16k
o\

§ . -
0597, 0-798, a.m])\OéTQS, this time using logs to five places of decimals,
we obtain

-
i‘.\/?Jf- a By (1) w by (2). T forence.
N

RS ~ 0-G467 —0-6534 4+ 0-0067

N 0798 - (6452 — (6408 + 00006

7NY 04799 — 06517 ~ 0-6460 — 0-0057,
)

Vl}ém which it is seen that the true valuus are nearly
g —0-6484 apd y= +0TI8L
We therefore substitute in equations (1) and (2)
o= —0-6404 48 snd y= + 07981+ 8y,
neglecting squares of &» and 8y Using unils of the third decimal
place, we have
12638z + 31928y = —0-0621,
289582 — 108538y 0-0859,

1

{p311) 4"
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whenee Sx= — 00160, Sy= - 0-0131,
50 z= 0649416, y= 1+ 0-798087,
which is the required soluiion,

47. Solution of a Pair of Bquations in two Unknowas by
Newton's Method.—A more fornal and general Arentneent of Lhe
topie of the last section is the followin 8. Let two equations be given,

Jin 9)=0, gle, y)=0,
from which the unknowns {2, ) are fo be determined. A .
Let (g, 5g) be an approximate solubion of the equations.  JWeby

N\

N\
B=ux4+ b, . \”}
¥= Yo + k. 2 “:"
A 3
Then by Tayler’s Theorem, neglecting powers of h addM above (he Arst,
we have N e
o FNY
0=z o
Ty g0+ kc-'u;ﬂ -E-:‘?\k&.ft),
. AN
O =uir "\ —
E Y 'fi{lajrn'. fﬂa\yov
»a,f * af}'
giving b1 ;\Lig_mﬂ

NI
oy By Dy B
O G
¢ '\\.} _ fal'a ‘8?:{_]
N\ ¥ o
O ) cry dyy gy <z
Thereforg ’&h’ﬁmproved pair of values for the roots is

of oy

~ > o fag

£ ) g —J—
\s iy o 0 Mo
R\ PR o o
~\‘ft.' Gy Oy Dy Tay

&y of

exy” Yomy

"=t — -
7]
thtg Sy Tty By

These formulae may be iterated as in Newton's

process for equations
in one variable.

48. A Modification of the Newton-Raphson Method.—

The computations required for the Newton-Raphson method
may be gimplified in the following way.
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Instend of
41 =~ @) [f (%),
we may $ake as the formula on which iteration is based
o1 =@ = Jle) [/ ().
This means that in the successive steps of the process of
§ 44, wa replace the tangents at Q, R, . . . by lines paraliel to
the tangent at 1. By this method we are saved the trouble of
calenlating #'(z,) at each stage, while the number of approx1~
matio:s required is practically no greater than in the N ewtofl: \
Raphson method. QO
Fu, 1. —Ty find the root of the equeiion N
flz) =B 4 4zt — 2® 4 102? — 2¢ - 962=0 :\\"

whinh hetween 3 and 4. \J

11: '3)= — 865, f{4)= 1110, so by proportional p:uts we may take
#y== 5% as a first approximation to the roob \\a

Thew next approximation is &

ey =g~ f( Toffgf(“"u}‘
Now
Jlug)= — 65-85, f{ag) _\=A+16w'3-6f +20x— 2 =1166-6,

and 1)f (wg)=0- 0(}@85’? {nearly).
Ther:fore =33+ (69,8 x 0000857

=3:356.
N\
The next appr uxunatlog‘f‘\
\\ Fp =y —fia 1"?”1«*
Tustead of ca]cgl]a,t:ghg Flay), we may nse f'{zg) again.
Now PN\
\ ¥ 2 xy+ 4= 7-358,
(o) P4y —2m 226867,

N
%' 13+4x1 — 2z, +10= 86137,
oy dag® — 2052+ 100 — 2= 28708,
A\ )5 4 donyt — 2+ 100 9, - 962= 144,
wﬂ‘\?'d":ﬁhi’l’ﬁ[brc flag) =144,

We have at once
gy — (1-44 x 0-000857)
= 2-3560 — 0-0012
= 3'3548‘
This is correct as far as it goes, the value of the Toot to seven places
of decimals being 3-3548487.
K. 2. Compute the root af the equation

& + logqge =05

correctly to five places of dectmals,

N
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49. The Rule of False Position.—Another i'cration pro-

- cess belonging to the same class as Newton's fur Inding the

root of an equation is the following.
Let f{z) =0 be the given equation. We find {fy trial or

otherwisc) two values ¢ and & near the root of il couation

such that Aa) and #2) are opposite in stem. Lo the are

CRD in the diagram denote the curve ¥y =707, thn ubsclssa

of Il being the root of the given equatinn, and =i

the equations #(z) =0, /"(z) = 0 have no root Lotwysp

N Fu. 11,

b, the g,bééjééae of Cand 1. The curve is thorefore constantly
concaye-to the axis of along one of the ares CR and RD,
g@}constantly convex to the axis of # along the other of
these arcs. Lot RD be the are which is convex to the z-axis.
The equation of the echord (D is given by
1y /B =)
y=stay = g,
and the abscissa o of the point A,
axis ol g, is given by
'y (B ) f) -
=g L W L
70~ Aa) s
Then #’ is evidently a closer approximation to the root of ihe
equalion than a,

where the chord culs the
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We now draw the ordinate at A" to cut the eurve in ¢ and,
as helore, we draw the chord (D) intersecting the z-axis in a
putit A” which lies between A" and K. The absecissa a” of the
point A” iz cvidenlly a closer approximation to the value of
the oot than ¢, and its value is

v (o)) 9
& = =
70 =y @
and 5o on for fuvther approximations to the root of the,

eouation.

b ig evident that the computation of the roct may be slmphﬁed‘:i‘ in
watialion (2) we 10}31%(: b by ¥, the abscisza of any point on {hecurve
bedveen Boand 1D, ag in Fx. 1 helow. ’

'\.'

Hquation (1) may also be written in the form¥_

LGB =bE) ND
== 4 \
FORDRIRE

The iterative process based on this equablon is known as the

ile of julse position. !

lhe rule of false position is essent;ally inverse interpolation
(§ 34) when differences abos’e the first are neglected. The
ahove iteration to the rootdds valid even when the initial points
D are on the acame{ﬂ\ie of the root R, provided the arc
1D is econvex to the\(\uufs

Ex. 1—To solze, .g?a,g.‘equaiwn

e '\ ) B % B,
I
Here \mn take n=23, 1 =3, and
A » . G-y 1
“:.’ o= (JTI"’S) -f{ﬂ) 171
W 906,

2’ ’
\”\3 now take a' == 2.06, = 2-10, then
) (2-10 — 2:06) {— 0-378184) _
@ =206 -~ 5561000 + 0-378184
i, @ = 2004 ) ]
,Instead of taking B =210 as before, we may take ¥ =2-C96 since
£{2:008) is positive, We have
e 2002 (- 0-006153416) o 0
o' =2-094 = 576150736 + 0-006153416

=2:0944 .

The required root is 2-004551 correctly to seven significant figures.

,\\'

N
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When the rule of [alse position is writlen 1n il form

F&)~fa) Sia) i :
—ee S A {3
b—u w— w —b b
we may cxpress the rule as follows : ¥
Assume twe nuwmbers as near the true root s possible cid jind the error
arising from the substitution of each of these guuntities insiend of the
unknown quantily in the proposed equation ; then as the « e e bebween
the twe errors ds o the difference of the assumed numbers so 45 silhor arrbiND
the vorrection of the covresponding cssumed number, a
Asmuming tlis new value @ insteasd of « and anotber ypaLbity b
differing from o enly by one unit jn the last Place s0 thatZ®\N: Troater
or less than o' according as o' is found too amall or Loo gt we then
. . " P .
find & new approximation & and so on io any requiticd degroe of
aceuracy, +¥0)
’ . ' . "
Bz, 2.—Svlve in this way the above equation g™\

B =2 —5=0,

50. Combination of the Method§lof § 44 and § 49Tt
was remarked by Dandelin 1 thaf, sz* combining Newton's rule
with the rule of false position we el in possession of a method
of solving equations in W'hjefﬁiﬁpper and lower bounds to the
value of the root are ohtdined at every stage of the process,
so that any digits comnion to the two bounds certainly belong
to the correct value ff.the root.

Thus using t}\geiﬁgure of the last section, and still assaming
that RD is the are which is convex to the x-axis, we draw as
before the ghotd CD to cut the axis of # in the point A’
whose a:b\s?fhsa. ¢ 18 given by the equation

o) PO Gl YA C)
N -7 (”

\'?Whel”e @, b are the abscissae of the points ©,1). Then « is &
‘closer approximation to the root of the equation than . We

now draw the tangent at D fo cut the axis of zin B, If b
18 the abscissa of 1), then ¥, the abscissa of B, is given by
Newton’s rule in the form

, .t b)

b:b—ﬂ---.., 2
7o) @

and ¥ is a closer approximation to the root of the equation

* Barlow's Matkematical Tubles {1814}, p. xxxvi.
1 Mém. de U Acad, Royale de Brumelles, 3 (1826), p, 80,
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thaw & It is evident that the root of the equatiom must lie
bstwseen the bounds &’ and "

‘We may now operafc on « and ¥ s on « and § to find
two new bounds of the root, namely,

(' - a)j (o) oy J)
e and B =B =R
J) 1) S )
which envelop the root more closely than 4" and %, and so on « O\
for further appreximations to the root,

a-” — {E,-’ -

o
2 A\AN

It may be remarked here that af the eonclusion of the process itn\ds *
hest to t*tke, as our final valwe for the rool of the equalion, the a.r‘ith'
meiieal mean of the pair of values Tast ealeulated for ¢ and 3 O

¥

Ex—Cousider again the equation : \'\.'
fmy=a® ~ 22— 5=0, v/
for which flx) has a root befween 2 and 2.1, ulnle\f {z) has no root

hatween these limits. " \

. A
Now 2y f(2)<0 and f21) x £ >0,
50 if @== 2, b=2-1, tho curve y=f{r) is conxje')b.fo the axis when z=b
The next approxunatmns are : P
F2 el \ 0-061

b=21-2enT 2 ~ 11350
=D 03467
e (Bx @12

L -f2)

)

= — = 943,
;‘\ 2+1061 20

Compa.ring\:ﬁ.\a,nd o, we see that 2-094 are digits of the frue root.

Now jaks ™ o =2-0943, ¥ =2:0046
and wargel

NS N — 0-000000,841949,4579
WO gy L E ) 560454 phitaic)

Ty - fa) 0-003548,048720

= 109D LTS, 0-000541,550536
L000541,5505
B =l - JO)F(H)=2.0946 ~ 1163047 48
=2.004551,483,
50 the firat eight digits of the root are 2 094.)01 4,
The arithmetic mean between ¢ and "
2.094551,48,

which gives the first nine digits correctly.

VvV
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51. Bolutions of Equations by the usge of the Calculus
of Differences.—We have already scen in § b biow cquations
may be solved by tnverse interpolutive.  Wo shall 1ny show by
an example how divided Jifferences ((hap. I1.) wnay he applied
for this purposo.

Suppose it is required to solve the e {uation

Y=o+ 300 - 122 - 10=0. I\
The coefficients — 10, —12, 3, 1, arve of comrse the dyided
differences of y for the set of coincident ATUILINGN GE U:"“i i
we can write down part of a table of divided diﬁ‘el"tg}:l'cﬁ}s' tha;

N
. Y 7
0 - AN
0 - 7
A N 1
0 - AV 3
»';‘.11_):

0 —~10 X ::;':‘“
and this we shall now efigf;eﬁd downwarde, 'The third differ-
ences of y are constaxb,and therefore if we take as the next
argument =92, wg::\héve

N
¢ ’9

P4 ' - 1
s 0 - 3
O -12 1
: 0 —10 5
“’:":; -2
~O 2 -14

Here the number 5, which i the new divided diffevence of the
2nd order, iz obtained from the equation (p— 3)/2=1 giving
p=>5: then the new difference of the (rsf order iz obtained
from (7 +12)/2=5 giving ¢= - 2; and lastly the value of the
fanetion corresponding to the argument =2 is obtained from
(r+10)/2= -2 giving 7= —14. In this way we constructh
the following table of divided differences, taking argnmnents
suggested by the sequence of values of Y a,‘[ready-oﬁtaiﬁed:
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e Y.
0 - 10 3
-12 1
0 - 10 5
-9 1
2 - 14 75
1675 1
2-5 - 5625 109 A
23-89 L\
2.7 - 0-847 109 \
26-07 A0
2.7 — 0-847 1L14Y
2607 N
2.7 - 0-847 R RE
264030 (¢ 1
273 - 0-054883 WO 1118
267387 1
273 - 0054883 O 11.19
“Lerasy 1
273 ~ 0054883 % 11192
LN 26761084 1
2732 - o‘oa{qws 11194

ITaving found :t}:f.s;t‘ 2.7 is near the root, sinee y 1s ecom-
paratively sqgal]:'eve vepeat the interpolation and thus obtain,

(§ 16) i..;;‘}"
R - 0-847 + 26-07(x — 27) + 111w - 2:7)? neatly,

’g&)vmg 2 — 2-7 = 0-03 approximately ; so we take 2.78 as our next
\pproximution. We continue this method until the approxima-
tions are suificiently accurate for our purpose.

If we require the approximation correctly to four digits, wo
have x—=2.732 and the next digit is found to be 0, so the
required root is 2-732.

Having obtained this root, we proceed to find approximate
values for the remaining roots of the equation. Thus we first

transform y into a pelynomial in (2 - 2.732),
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2.73 - 0-054883 11-1492
26-761084 H

2732 - 0:001361 11.164
26783472 1

2.732 ~0-001361 11268
26-783472

2:732 - 0-001361 Q|

§D A +

A
y=26-783(z - 2.732) + 11-196(z — 2732 + (= ~ 2-?§’§}R"fﬂeill‘ly).
We may now divide out the factor « — 2-?;%2‘}@1"1{ zolve the
quadratie so formed, 7
26783+ 11196 (z - 2.732) + (pr2N752)2 - 0,
The remaining roots are found to he \™
{ X = —,5@0
and z = ,'—’?0-732,
which are correct to four significant figures.
(The actual roots of thes above equation are 2.7320508,
— 07320508, and —5.) .4
Bz —Find correctip 30 four significant figures the root of the
equation <
NN T 907 4 23~ 140,
which is bet-wégé\}'fé and +5.

52. The(Method of Daniel Bernoulli_In 1728 Daniel
Bernoull{*/devised a method wholly different in principle from
any »zv'mch were then known, Though bardly now of first-rate
importance, it is interesting and worthy of mention.

W\ Let it be required to solve the equation

NS

G+ gty L g o), (1)
Consider the difference equation
doy {t+n) + ay (t+n-1)+ .. ety (=0 (2)
The solution of {2) is known to be
Y(f) =wy o Tt L tw, . L (3)
where g, w, . | - Wa are arbitrary funetions of # of period
Landzy, . . ., &, are the roots of equation (1).

* Commentaris 4ead, Se P

tropel, TTL {1732) 1 O, Euler, Introductio in Analis
Inf. 1, cap. XVIL ; Lagrang

&, Resolution des dpuations numérigues, Note 6.
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1f j#,] is greater than the modulus of any other root, the
first term on the right in (3) becomes very large compared with
the other terms when £ is large ; and therefore we have

This leads at once to Bernoulli’s rule, which is as follows:

In order to find the absolulely greatest voot of the equation (1),
we take any arbitrazy volues for y(0), (1), 9(2), . . . y{n-1)GN
Jrowm these by repented applicotion of equation (2) we wfcmfmfwn
suocession the values of y(n), y{n+ 1), y(n +2), . . . . Lk witio
of lwo suceessive members of this sequence zemis in gmeraﬁ* to

flmitt, which is the absolutely greatest root of the 6ng’LOﬂ (1).

Fr. L—Find the absolutely greatest voof of

P Bt — 5=, ',"\\':
Consider the difference equation \ v
Y(E+ B+ By(t+4) - oy?&) 0, (

atd write down arbitrarily the valies y(jﬂ)"m 0, y(1)=0,y(2)=0,3(3)=0,
gi4=1. By means of cquation (1); 3y ¢ hax e the following values Uf

#iB) #6), cte. N
P15 160 T |80 9 N0 | 11 | 12 12
y(fjim_.'i!:?é - IQS'G%I 3 mo}m 7h| = 77,750/388,125| 1,927,500/
Also ‘3(‘14 = — 5y(13} + by(9),
9 156

B0 1;(];%} - «)’y(. ): _5_{__”.':_

Mg y(13) 19375

N = — 4-091948.

The a,beo{ge}\r greatest root of the equation Is thevefore given by this
method @ddpproximately — 4-891948 ; this value is as a matler of lact
correetngd the last digit.  If we had stopped earlier, we might have

obiindd, a4.
&\ 4 w(12) 388,125

A W(11) = 77,750
which iz in error only in the sixth significant digit.

Ex, 8 —Find the smallest root of
— 622 FOr-1= 0

— —4-991986,

eorvestly fo seven pluces by Bernoulld's method.

{ Note.—Put 2= % and solve for )

% Tf the ratia does not fend fo a limit, but oscillates, the root of greatest

modulus is one of u pair of conjugate complex roots.
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53. The Ruffini Horner Method."- — &s we iuve ep.
tioned in § 41, the method of Vieta was the common wethod of
solving algebraic equations until it was u perseded Ly Newton’s
method of approximation. The resson why the Nesvtonian
approximation was fourd o be loss laborioos they Ibs pre-
docessor was that the earlier method contained no yivision for
making the steps of one parl of ihe process facililnie thse
which succeed, N

In 1819 W. G. Ilorner discovered a rule+ fur 1 *"El\ra\'uillg
the eomputations necessary in Vieta’s wethod, by .,'“'* L that
method was made preferable to the Newtonian, aisn sessored
to favour. O

Horner’s contribution was essentiall ¥a coﬁ{?mient ninnetrical
brocess for computing the coeﬂleients,t{:t-hr-} equation whose
roots differ by a given constant frode he roots of o given
equation.  We shall first consider¥is Process.

Let Alz) =0 be a given equation‘wheve J{) is o polynomial in
&, and leb it be required to find) the equation whose roots ave
the roots of this cquation, ‘(zaéh" diminished by .  This equation
willbe flz +7) =0 or 3"

P4

o\ 2 2
Q@0 E 0 Fr e o

The expressiogs (), FOLS 2L omse may now be
found in E:l:e\following way.  Suppose for example that

\“\ S =AG 4 Dty Gy De 1o T

2 . .
‘:V;:;t-e down the coefficients A, B,CD,.., ¥ ina horimntal

(Pow and form from them the lollowing scheme in which a new

Tetter below a line stands for the sum of the two immediately
above it, ey, = Ap ¢ B.

‘ * Ruffini, Supra fa determinazions dalle redcr. Modeun (1804 ; and emoris
AL Mel. & g goys, dell Ser. Nalinng delle ASC?:{:%Z(‘?,' Verona iS 130
. ;[—é";rner, Phil, Tyrans. (1819}, Part T, b 808; and The Muthemodticien, 1 (1845),
t 8o far as the euhs root is concerned
Adexander Ingram in the Appendix to his edition of Hulton's Arithmstie
(Bdinburgh, IR0T). A uetiod based on th

; : & same prineiples had been discovered
in the thirteenth century by the Chinese math ematicians,

y it bald heen given previeunaly by



ALGEBRATC & TRANSCENDENTAL EQUATIONS 101

A B C D E F
Ar Pr Q@ Rr Br
P k) B3 8 “w
Ar e Uy Vo
T U v Y
Ay Wr  Xr

WX ..
Ar Yo QO
Y @ RN
A o

e "4 “?’s

Tt is seen at once that the values of 8, ¢, B[,/X;}'m, thus
ohtained at the fect of the eolumns, have reispe’aively the
vaingg \
) 1 e\
d=0Ar+DB Zﬂf ‘(#,

W

v
»
¥

¢=T10Ar2+4Br+C= ‘%’f )

N PR
y'/‘-_—“ ].0;’_'4.\_’?3 + 68?‘2 —t’%CTJ.- D =2_I' 4 (‘?’J,
X = 3Ar + AR 302+ 2Dr + E=7(7),
w=ArS 4 I‘Qfx“\c’k Cr? + o2+ Br + F = /1),
and thercfore the ,e‘rbuation (1) whase roots are the roots of the
equation f{z) 20each diminished by r, becomes
"\X'\G = Ag® 4+ dat + a1 Pt X+ o (2)
The abo¥evschume therefore emables us to find readily the
£‘-quatii3)t whose roots are the roots of a given eguation, each
diiinished by a given number.

\/ This process is first applied in orc '
the proposed eguation by its first digit; then 1t '
in order to diminish the corresponding root of t-h(.e T‘esult-mg
cquation by its first digit, which s the second dlglff l.]f .Lhe
required root of the original equation ; then againin dlmlmshl.ng
tha root of the equation last obtained by its first digit, which
is the third digit of the required root; and 50 on.

Note that »—— is the same as 9'—:’-{(?—5), and thig is the
X 7

f

ler to diminigh a root of
is again applied
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quantity which wonld he given by the ¥ “whon - Raphson
method as an improved approximation to ihe rob, after » had
been found as a first approximation.  This property s used at
each stage of the process in order to obtuin the next digit of
the root; in fact, we use the two Just terms v w of equation
(2) to suggest the next digit.

We shall apply Ahis metlul 7o i ke wipeflest s
equrtiton

o rnoh o Mhe
7N &
- 4.2 + H=10, f’\..‘\

.;l a:lily seen
1 diminish

By means of o graph of the curves p=r8 = 1.2 —f
that the requived root lies hetween Laud 2, =0 we ol
the roots of the given equation by unity, 7

# 4 y .u
&/
1 -4 0 A(HN
1 -3 NN
-3 Ti LN»
P
_. B, g
_2 S8
1 QO
: 1 'S Q':‘ .
The cquation whose roots are t-hjv:‘}»oots of the oj]-siginu] enyration diminished
by 1 is therefore AN
NP -2 Bn o (1)

We now form tl;q"éf}mt-ion whose roots
equation ; it is \\"

Cen times tle rools of this

) 2 — 1002 — 5000 + 9

We want $4 1050t of this equation which
N\ % .

other routg belng numeri cally greater than 10

3 a.ndué,?\é’u we diminish 1he roots by 3, tha

=1

s Defwien 1 oand 10, the
[i 1= v fo be between

.x"' - 10 — 500 008
R\ _3 - 1503
-7 —521 v
\ ___3 — 12 437
~ 4 5ig
a2
—~ 1

8o the transformed equation is
% — 0% 53304 437 0, (2

* By the pringiples explained above, viz, that the twl
equation have the ghiaf iniluence

being evidently small eom pared
1 and 10,

last terms of this
e two firab terms
1 ljes belween

in determining t]0 roat,
with the two last terms, wh
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Muitiplying the roots of this egnation by 10, it becomes
@% — 10z® - 53300:: + 437000 =0.

Thiz equation has & root hetween 8 and 8 (as is seen by the in-
speeiion of the last two termw since 437000/53300=8-19 ...}, so
we dimzinish the roots by 8,

1 — 10 — 53300 437000(8
8 =16 - 426@
— 2 ~ 53316 10472
8 48 ¢ ~\.
6 — 53268 \ \/
8 « \J
14 \/N:"
Tlie transformed equation is therefore /\\
& 142 — 532682 - 10472=0, ) (3)
and, mulliplying the roots by 10, it becomes x,\\.}
3 4 14022 — 5326800z + 1047200020, ()

for which an approximate value of the roob ist :’; »
)".
16472000 or J’:.‘JG}EQ

5326800 A%
Thus, finally, we obtain for the”réq{ﬁred raot. of the original equation
the value AL
13819659,
7 \~./’
which is in error only by\Q}e mmit in the seventh place of decimals,

We may nofe that approximate values of the other two roots may
b obtained from t.ﬁé;é‘qmition at this slage in a vory simple f'as.]uon:
For if & enbic cglagion has two roots M and N, which are numerically
very large ini ,@i%grison with the third Toot € the eubie is nearly

AN g (M 4 NP o M - MNe=0.

The OJ.}fo'}t- two roots of the cubic (4) will therefore Le approximately
ﬂ}.&l‘a}té of the quadratie

\/ o 4+ 140z — 5326800=0,
which are = 223905
and g= — 237905,

and therefors the two corresponding roots of the original cubic are these
valnes divided by 1000 and inervased by 1-38 (the part of the root
already found), viz

5=

and 3818,

These are in error by one unit in the third place of decimals.
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We may vote that Horne’s Process & really the Forsoedioe i tuble of
divided differences.  Thus taking the lastl exmuple
required to find the oquation whose rools are (he rouds o

eippose 1L da

Neal— g2+ 0=0,

ench dimiuished by unity. We note that the eoefliciunis
the divided differences of X for the sel of colneilint. ar

50 we can wrile down the following table of dividel dileree. .

= X . Q)

l N ¢
0 5 —4 ,o\’\“.\,
) 1 &\
0 5 -3 L
-3 1 LY
1 2 -9 +* >

. AN
1 2 -1 W
1 2 K7\

whenee, by Newton's formula for inte:p(‘)Ia}mn with repeatod armunents
(§ 16) we have {

« N\
X=2-blx- l}fi»‘g R ML R
or X =285y -y 45,

which is equation. (1) above,~8®

_Therefore the eriua,ti.QQ whose roots arc ten times the meois of the
reduced equation is .8

\@n__«’ 2000 - 5007 — 102 4+ 2 = 0,

Now diminigh the rools by 3. This is done Dy the difference jable

&= x o L
Vo \ud 1
\V 0 2000 —10

AN — 500 1

\\ 0 2000 %
NN — 521 1

~\/ 3 437 -4
\/ — 533 1

3 435 -1

— 533
3 437

50 that Xe:437 — 533z - 8) ~ (#— 3)2 + (w — 33,
which gives us precisely equation (2 above ; and so on.
Fa. 1—Pind tu sia sugwifieant diyits the positive root of the eguuiion
#2432 19— 10=0
by performing three Horner's transformations and then approvimating
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Tirst, diminizh the roots by &,

1 3 —12 -10
2 10 ~ 4
5 - 2 —i4
2 14
7 1z
g
=

Therefore the new equation is
#3022 4 120 - 14=10,
Afultiply the rools by 10,
25+ 90224 1200% - 14000=0.

Viminish the roots by 7, \
1 g0 1200 —
7 870 \.\&:}T 53
97 8T NV 847
7 78
— oA N
104 2607
7 NY
111 3

. A
Thersfore the new equation if.:/\\

A 292 + 26075 - 847 =0,
Multiply the rootsjﬁjg 10,
o\
{'xf\;;].u 02+ 2607007 — 847000 = 0.
»
Dimini : \_35./ .
iminish th'e.”{@t by 3,

,xw’ 1 1110 260700  — 847000
O 3 3ssp veelly
N N 1113 264030 — 51883
O : 3 3348
<> 1116 267387
3
Ti19

Therefore the new equation is
g3+ 1119024+ 267387c— 54883=0.
54583

1209C L 0.205 (nearly
287 367 (nearlyy

Morcover,

go that the required root is 2-732035.

105
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To get a better approximation, we have fram the Iast equation,
approximately,
54883 1119
“T 967387 ~ 267887
= 0-205257 — (0-0041849)(0-205)2
=0205257 - 00001576
=0-205081,

50 the required root is 2:732050,8. Q
£ 2—PFind sorvectly lo seven stgnificant digits (el oot of e, ctiation
O\
2P e B2 4 98— T4 =0 2N

which 4s between + 4 and + 5, by performing thires _Hi)lj:?.(
tions wnd then ADPTOTAMLE i1, \ ?

B, 3.—Find by Horner's mathod o root of the qu((fé'ma *

4 dragigforma-

2% — Zn= 3,

54. The Root-squaring Method\Jof Dandelin, Loba-
chevsky, and Graeffe—Wo shall Yext cousider a incthod
of solving equations which was stgoested independently I?}f
Dandelin t in 1826, Lobachgysky i in 1834, and Graeffe§ in
1837, and which is freqmz{r}’tlir of great use, especially in the
case of equations possesSing complex roots. It has the
advantage (when performed completely) of finding all the
roots at once and of not requiring any preliminary dceter-
mination of h@lr’approxima.te position, Tty principle is to
form a new eq%tion whose roots are some high power of the
roots of t]im: g:iven equabion : suppose we say the 128th power,
so that(if the roots of the given equation are m, s, 7, . -
thensthe roots of the new equation arc g%, z,1%, ;1%

TQ&S’e numbers are widely separated ; thus if #; were twice xy,
.

2

‘then 2% would be more than 10% times 2,7%, and, as we shall
“seo,

an equation whose roots ave very widely separated can be
solved ab once numerically.

* A pupil of De Morgan by Homer's method found the root of Wallis’s well-
known example @ - % =5 o 51 Maces to he
x=2004 551, 481 542, 326 591, 482 386, 540 579, 302 965, 857 306, 105 6238 259,
This was subsequently
3 (1830}, p. 280,

+ Mem. de 4 ead, Royale de Bruwddles, 8 (1526), P 43,

T Algehrn or Coloudus of Finites, Wazan (1 834}, § 267,

§ dufltsung der hshoren numerisshen fAleiehumyen, Ziirich (1837). The method
was perfected by Brodeteky and Smeal, Proc. Cumb, Phil, Sac,, 22 (1924), p. 83

extended to 101 decimal Places; of, The Mathemetiotan,
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Suppose it is reguired to solve the equation
b ot b e P b ag? 34, L ey =0. (1)

In this cquation we shall denote the roots, which will for the
present be assumed o be real and unequal, by -, -0, —¢,
—d, . . ., the order heing that of descending numericel magni-
tude, =0 that ;a}>|?';|>|c]>|d ... The values a, &, ¢, &, . . .,
which are the Toots of the equation reversed in sign, will be
called the Eneke* roots. Equation (1) may now be written ingy,
the form D\ B

2+ [aler 1+ [ale -2+ [abee 2+, . =0, 4 ~\ (2)
where {a] denotes a+b+c+d+. . ., that is, the "ngﬁ’of the
Encke roots, [ab] denotes ab +oo+be+. . ., tho @ of the
products of the Encke roots taken two at a e, and so on.
If, moreover, we denote the sum ¢ + b + ™ d@rs. .. bylal,
then the equation whose roots are the Mk jpowers of the reots
of the given equation will evidently, if Mis even, be

o 4 [ﬂ'm:ixn—l + [ambm-]xn— 3 ti&;ﬁmbmﬁm]x}a—s .. .=0 (3)

The problem before us is“to’;:’bhstruct the equation (3) when
the equation (2) iz given{and is some prescribed number.
Tn practice m i a largé humber in the equation (3) which is
ultimately formed, b&b we do mot attempt to comstruet fhis
squation ab a singlesstep of the process; instead of this we first
take m=2, thih is to say, we form & Dew equation whose
Encke 1'(10133\’&%" the squares of the Hncke roots of the original
eqn.ationog\\t}ien, having done this, we repeab the process,
['urming: a new equation whose Eneke roots are the sqnares of
hef Tncke roots of the equation just obtained—that is, the 4th
%{L}ﬁ'érs of the Eneke roots of the original equation—and so on.

Thus our immediate problem is to comstruct the equation
(3) when equation (2) is given and m has the value 2. This
we do in the following way. [Rearrange the given equation

o+ L+ ag®® r 4+ ot 3. L o tan = 0, (1)
so that the terms containing the even powers of @ are on one
side of the equation, and the terms containing the odd powers

* fncke, Journal fir Malk, 22 {1841}, p. 193.
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are on the other side. Squaring hoth sides of ihe resulting
equation, we have at onee
(" + a2 agat g, L V= (ut L gyt 2
or, putting — x? =1y,
YA (a® ~ Zaghy™ 1+ (w0 = Zugay + a0yt 0L L =0, 4

. . N\
Singe the roots of equation (1) are —a, —4, —¢, . “sNand

—%? =y, the roobs of equation (4) arc —a® — 12, ~ 2 O that

18 bo say (writing @ in place of y), the equution whasa(Thelie roots

are the squares of the Encke roots of (1) 4s (»}"
2o \arolyg,2 & e ]:au'h-af’ _ \1¢:’ e, =00 (5)
— oy — Zageny - -y, — Zayu; < Sggmgt
+Za, J +2a;0, — 2o, 4|
— darg + Loy \
A

The law of formation of tle Goe’i&;iﬁ\nts in equation (5) may
be stated thus: The coeflicient of sy power of m 4 furmed by
adding to the squore of the ~,cb';--}'espondmg eogfiteient in the
original equntion the doubled. wroduct of every pair of coficients
which stumd egually fun Prom it on either side, these produets
being laken with signg cizta;'ncz.tdy negative and positive.

Having thus formied the equation whose Encke roots are the
gquares of tl1e.E'@el§e roots of (1), we repeat the process, thus
obtaining amyequation whose Encke roots ave the syuares of
the Tinckeopoots of (5), that is to say, the 4th powers of the
Encke r@@t\s of {1). Tho next stage yields an equation whose
Encke tdots are the 8th powers of the Encke roots of (1), and
20D

\ Now consider the equation which is obtained when the
& “\ Drocess has heen repeated several tirnes, so that we have caleu-
N\ lated the equation (3) where m is (say) 64 or 128 or 258.
Since ¢ ig numerically larger than 5, therefore a* is enormously
larger than &% or gm op gm . . and thus the sum [e®] bears
bo ks first term @™ a ratio which is very near to unity. Simi-
larly [a™t™] bears to its fivst term a™b* o ratic which Iz very
near to unity, and so on,

If, then, the ratio of [@™] to @™ is 1 + ¢, where e is small, we
have

log [a#] = m log o+ log {1 +€)
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or log o] = = ]orr (o] “. log {1+¢).

Since we have caleulated [@], the right-hand side of this
equation is known exeept for the small quantity 1 log {1+ ¢),
n

which we may neglect ; and thus[a| is determined.
Next, since [a™b™] =a™5™(1 + v}, where y is small, we have
N 1 i : 1 4 :\.
log |ab, = p” log [¢&], neglecting Py log (1 + ), O ¢

%
ol

and therefore RO

RY4

log |3 == 100* [amtm]— — log [@"], 00

which determines the modulus of the second -;;aig}&}b': and so on.
In solving an equation by this methedyit is all-important
to know when to stop. Obviously thé ¥e to stop is when
another doubling of m would give a, resilt not different (in the
digivs we wish to include) from} whe result which would be
obtained by stopping at onedj that is to say, when the
coefficients [¢*], [a*d*J{\.. of the new equation are
practically nothing buj;g“?he squares of the corresponding
goeflicients [a™], [a”*-?;"’\]{\.w. . in the equation already obtained.

Iip 1.—-1 solve fﬁe~eq1eaizon

s\
\L 23102242354 12=0.

The e ‘th’l;. whese Encke roots are ihe squares of the Encke roots
of this eqﬂa?bion. ig
:~\’;':; @8 4 352 1 27T+ 196 =0,
\’\?Tile equation whose Encke roots are the scquares of these is

23+ BT 1t £ 63009:4- 38416=10,

and proeecding in this way we ovhiain the following cquations :
3+ 32422302 - 3-01858 x 10% + 1-475789 x 107 =0.
P 972884 x 10102 4 1.535481 x 10"%:+ 2, 1TT953 x 1075 = 0.

¥3 .4 0-43335 % 10%2 1 9.357548 ¢ 103 + (2177953 x 10882=0.

434 8-898762 x 10%2 + (2:357548 x 1038}%+ (2:177953 x 1015 =0,
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Stopping at Lhis stage, we have
log (%) = log (8-898762 x 103 .= [3-0.(9320¢,
whence log |a| = 0-68GT083,

s the munerically grealest voot is + 4-86080G.

Alzo lug 8= 2 [og (2-3575.18 x 103
= 70T440212,
N
80 Tog 15] = (7674489212 — 13-9493206) = 0a 12453 )
=log 32541014, L\
Thie next root iz therefore +3-25410150. " \\
Tastly, A\
log ab48%8 = 4 log (2:177053 «}1 ol
50 log |¢| = £(T3-3521936 — 76" 744020 ) 18460854
_1Ug 08850924, INY

#%4
W

The nuwvierically smallest root is themfua t 4+ ORB3002.4,

A rough graph shows that 4alD the rools are negative ; they are
therefore R

- 4860806, 2541015, and — 08850524,

We donot usua‘rl_}: Tequire to compute each of the roots of an
equation o the §a§Ne degree of accuracy, although we may require
to know thé ‘approximate values of all the roots. We shall
therefore give here a more rapid w ay of computing the vools to
two on thiee significant figures, in which we nse a 4-place table
of sqgales such as Darlow’s Tables, and 4- place tables of
{g&mthmq We shall denote by ™ the equation whose roots are
_minus the mth powers of the roots of the original equation, and

N 3 we shall write, e.g., 18067 for the number 1-896 x 107,

\ ) B, 2.—1To solve by this method the cquation of Ex. 1:
#9024 235 + 14 = 0,
We first arrange the coofficients of the equation in order :

B 2, 7. .
1 2000 23001 14001
Bquaring these coefficients and

equation (5), we compute p2,
of the suesessive equations in

addmg the donbled products as in
then p%, p® and so on, arranging the values
tabular form thus :
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1 81001 52902 19602
~ 4600 — 2520
21 3500 27708 1960
1 12253 7673t 384324
- 0554 — 1372
1 06713 63014 38434
1 45025 39709 1476°
~ 1260 — 0052 Koy
- . I AN
7?1 32425 39182 14789 . QO
1 105111 1350 grrens )
— 0078 '\;.“
o8 1 09731 15851 2179180
1 946721 2356%  gpduds
— 0031 A
P2 1 943421 23568 )" 47450
M1 850447 @.ﬁi‘?ﬂ 22547

Examining the coefficients of p“ e sec that if the coefficients of
P12 were formed they would be (fo ot significant digits) the squares of
the coefficients of p*’* 50 we stop e process here and compute the rosts
of the equation as in Bx, 1, usm however, 4-place tables.  We have

\icug %t = 439496,

../

whence \ ’\'; ws= + 4861

In order toffdetermine the sign of the root @, we nole that Ji—48)
— + 0368 i (= 4'9)= — 0259, where fir) ="+ 922 +-23+ 14, The
Gguation l\&k herefore a root hetween — 4-8 and — 49, and we have

£

»\¢ — 4861

)1‘10 log @f456% = 767 444 ; subtracting log 8% we findl log |b| =log 3-254,

wh¥nce
b= — 3254,

Again, log a®484c5 = 733530 ; subtracting the value of log a®*4%, we
find log [¢|=1leg 08851, whence
¢= — O"BB51.
The required roots correetly to four significant figures are

—4-881, —3-254, — 08851
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Bz 3.—Apply the root-squaring method o approciunide ia the roots of
the equalion
#3100+ 31w+ 30=0
£ three significant digits.
Br 4 —Find correctly o seven diyils the voofs of the oy fion
w3 1202 + Al + 48 =0,
A .
55. Comparison of the Root-squaring Methed with Rérmoulli’s
Method —The root-squaring method may be regardel uf Sadonging Lo

the same general type as that of Bernoulli, with whick ibaia; i connected
in the following way. N/

X

Let the equation whose roots aze lo be determ gt e

G le:?;,—l + (1?'13"'_2'{' . :j‘\a,sz'z (h {I-)

Bernoulli's principle (§ 52) ie that, 1 we 2edept avbitraril ¥ any valuey for
{0y, w1, . . o, y(n—1), and then dete‘r@i,tle yny i 13, eln,; In sucoes.
gion by the equation \x &

it +) + ot RSN+ ot =0, (2)

then the ratio of two sncecggive members of the seguence ol ¥
general to a linit, which duythe absolutely greatest root of t

Now let s, denote th:c:slml of the pth powers of the roots of equation
{1), and take y(O)“=§0’, wlly=gy, . . ., yn—1)=a,_5 Sincs cach To0b
of equation (1) s&@ﬁe& the equation

<‘ wrRpgttalp, | pauut =0, {3)

it in evideng that if we form » equations by substituting in this equation
the diffexcht rools in suecession, and then add these n cquations, we have
ab ofide”

y \n'

:"\:' s£+1x.+alsi+n_1+- . -+(-(~nsl!=0)

s0 that s, eonsidered as a funciion of ¢, satisfies the difference equation
(2).  We see therefors that with the values we have chosen for the first
n of the y's, wif+u) will be equal to g +ny and Bernoulli’s formmula vields
the result that the absolutely greatest root of the equation (1) is

Lt 841
Fmtnn Sk
This is obviously closely related to the resalt of the root-squaring method,
by which the root in question is given in the form T4 ~/5p%
B—2en

2: The value of the mmmerically greatest root of an equation in the form
(o +,’5’.2“+'}f?‘* oo M where o, 3, 7, . . . are the roots, and e=8=7 had
been given ag early us 1776 by Wariug in his Mhdéfationss Anabyticae, p. 311
Euler used the method fo find the roots of J oliz) In 1781,
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56. Application of the Root-squaring Methed to deter-
mine the Complex Reots of an Equation.—If the roots of an
cquation are not real the method of § 54 is equally applicable,
Suppose, for example, that the equation is of the 5th degree,
the roots in Encle's sense being a, 7, ve=™, b, ¢, where a, b, ¢
are real and |a| =7 >[b| >|¢|, s0 that the equation is

{2+ a)(&+ re'®)(z + re~ B}z + )z + ) =0
The equation whose Encke roofs arc the mth powers of these ig
(w L am) ($ 0 ?‘memigb) (Q’; + ,?.'mg-??lil,‘,!) ($ + bm) ($ + cm) — 0, o '\:\
N\

and if m is a large number, and we retain only the deminant
L. . £,
part of the coefticient of each power of , this reduces to
25 + a4 Pl oog _.m¢$s o iR | g '»‘.\\
+ am,rzmémcm =0. (1)

The root @ may be eomputed at once l%_}’l}\he method already
given in § 54 We now proceed to fiid the other roots.

It iz evident from equation (l):'tllat, corresponding to a
pair of complex roots, there with be one coefficient, namely,
2aP™ cog me, which ﬂuctua‘qcs:iif sign when o takes in sucees-
sion a set of increasing valwes (owing to the presence of the
cosine factor). Wo a]g&%ee that the value of #2® corresponding
to the pair of complex roots may be computed from the
cosfficicnts in the “terms immediately preceding and immedi-
ately followingybhe fluctuating term: in the above eguation
%= (a“’%ﬂ*ﬁ.’gm)’ﬁ"‘: Having found the value of #%, we now find
the valug&‘(} the Fncke roots b, ¢ from the two last coef‘ﬁcieyts
in equa\\bioﬁ (1). Let &, &', ¢ be the actual roots {i.e. roots with
bheif;.i)roper sign) corresponding to the Encke roots.a, b, e ‘

.. (\I'ti order to compute the complex roots reit’, re= W, we v.n-'rli::e
AN $hem in the form # + 4w and w — ¢v, where w =7 €08 q’).', v =180 &,
80 thab 7€ + re-* = 2u. I the original equation 38 written

25 1 ogat 4 0p7® + agdt +agr ot az =10,
we see at once that the sum of the roots satisfies the relation
gy =a +2utb e

from which » may be found. Since «,7? are known. » may
(D311} 5
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now be found from the relation =2+ 4%  The iwo complex
roots are thus determined.

Ex—T1. Solve the equation
ot — 2% — QW 25— 28 = 0,

ey 2 w? " o

1 2000 —6000 2500t —¥BO0t
1 4000 agootL 6GZh03 THA0%
12000 10000 — 3360 N\
— 5600 A
: 1 e ; A
# 1 16001 8000 28902 N
L ¥
i 2560% 64007 §anad ,“}5-514
—1600  —9248 —12544 N ?
# 1 0860° —1280° g 47
1 92163 15388 LN 579 3FTon
2560 8049 N 1574
1229 AW
# 1 1lvss 10422 33318 377w
1 13888 (qiBaM 11101 [128%
—0218 ~2%785 — 0835
L\ 0008
18 7 '_TY | 14 PIE ] ‘ ~2_3
e o, L\Iw 0415 0285 14128
1N \36916 172227 81233 20207
HNS0008 —ogaYT - 11852
N — — . .. - -
PANA 136116 1055% ~ 3720% 2039
\:\, 1 1832%  1yygw 13917 4158%
O 0102 — 4302
{\‘j"” 21 18528 199g8 ~ 20117 4156%
N\ "4
N 1 34308 1476108 8474148 17297%
0011 — 10104

»E 1 343004 1487108 [— 2830146] 17.2.9185

It is evidlent that further cquations are obtained by simply squaring
the eorresponding coefReients of the previons equation with the exception
of the cocffeiont of = {which fluetnates in sign, thus indieating the
preseuce of a pair of complex roots).  The process of forming new
eynations may therefore he stopped here,
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Taking logs, we obtain the results

log 0128 = 64:5353, whence loglo;=0-5042 and «=3-192( -}
log (15112 ~ 108-1724, whence log |b|=0-3400 and b=2193 +\
long (128p128,%56 — 1 85.2377, whence ]0" =0-6021 and +2=4-000.

Tt may e remarked lere that the mest important nundbers in
determining the values of {he quantities a, b, % are the indiees
ul)resentmg the powers of ten in the laetor of the cocflicients in the
iinal equation. TFor example, in the eynation denoted by 9128 we phtain
pm«.luallv the same value of the roels ¢ & i we nog]e(t the last two

digits of the numbers 3430 and 148:; but. au error in the mdu;i \*

(vl 128 would give quite o different result. Since the alove Immbgha
sannot be relied wpon as regards the acturacy of the fourth (hglt‘%c
:hall consider the final values of ihe roofs to be correct nn]\\f()rd,hlee
significant figures,

In order to cormpute the values of the complex roots +‘a¢, we see ab
orize, from the coetlicient of o® in the original equationy thay

Sy — 3193+ 2193 =12,

v henee we= 1500, v= + S —ulE

and the complex roota ave 1-500 £ 1-323¢ 4 D

Thus the required mots of the equalmn correetly to threee aignifi-
CATE dlgns are — 319, 2-19, ’:Ovjj THa94. {As a modter of fact the
alove values of the rools are copreetd to four s1gu1ﬂuu1t digils, the roots
cormetly to six places beuw—Q‘IQQ RZ. 21925832, 1-5 + 1-3228768)

Ex. 8 —Find the -3'00f\6§€ e auriation

’:ﬁ'i — G.‘r:-a +1 1;'62 B — 28 =10.

5Y. Equatmns ‘with more than one pair of Complex
Roots.-—The {éase where the given efquation possesses two
Ppairs Ufo@lﬂplew{ roots presents little additional difiieulty.

‘3111)p6&e the process is applied to the equation
O
\"\. W AP g i a1 e,=0, {1)

and that the coefficients of two of the powers of @ are found to
fluctuate in sign, thus indicating the presence of two pairs of
uomple\ roots. Denote these complex I‘OOLQ by ve?, vem, v'elt,

s~ We shall assume that the values s2, % together W ith
the actual real roots ', ¥’, ¢/, have been cnmputed as in the

fast seetion.
L - # ., N
Writing # =+ cos ¢, v=7 80 8, w =1 cos b, ¥ v’ SNy the

N
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complex roots are denoted by % .7%, and «/-- %", and Lheir sum
i 2(u + '), Writing cquation (1) in the form

(@—aYz-8Ye-e). .. (2% 2uz + 9D (2?2 - 20/ + % = 0, (2)

we see that the cocfficient of % in this equation is a lincar
function of u, »* which we shall call $(u, »).

Then d{, )=, 1 43)

By comparing the coefficients of 4"~ in equations (1), end (2),
we find NS *
N/
.t ’ ’ . [y L Y
—ap=alt Ve 2u 4+ 2wl W %)

S

The two last eqnalions express the ugL(i‘ié’Wns %, #' in
terms of the known gquantities ¢/, ¥, ¢/, . .35 #Zand may
be solved for w, «'; the values of ¢, o heing theu dotormined
from the equalions «2=72— 42 22,2002 The two pairs of
complex roots are thus known. .,T‘{a:fis evident that a similar
method to that given here may be applied to solve equations
with more than two pairs of g&iﬁp]ex roots,

Fie.—To solve the equatiog®h )

2T+ TP 4 218 -{%3:@" +1ATa% 4 18902 4 1190 — 451 = 0.

~

As in Ex, 1, §~.‘36{wé first forin the equations for p2, pd, 95 . . . ay
follows \ N
S NS #5, % @, «t T
71 T —1470e 0208%  0911*  —5EL0*  1846F 20348
Pt 1 BaBBY 3g0gt 18656 48657 01330 5EG0T 413770
2 s 0381° 1351 606415 _B3R01  9gde  |FIIR
Y Q}“'l] 190 2BAGY - 10867 264431 15219 105E% 20288
AR 1 pegye 9044% 04119 12018 _g50RaT 11198 G5
WO T 28427 S173® _gogam gapgee 1040 1pgwi 7a5000

\\3".}1“8 1 f442% 6630182 THRAYM  ONgRt  _ 550028 fRgeiM 540580

PREOLADIENT 446270 [BOODRR] 4977 [0§40%7] 245908 2915070

The roeficionts of #' and #2 flustuate in sign, whenee we infer the
Presence of two pajrs of complex roata. T aking logs, we have

256 log & =141:6037, whence log o|=0-5581 and o’ = — 3574,

256 log wb=279-6105, log (' =0-5392 b= — 3-46L
256 log abr?-. A04-8311, log #2.2 0-87R8 #2..  F-RGD
250 log alr?'? - 688-3008, log #"2 = 0-717%8 P2 5292

256logcabcgf‘gr’ﬂ=6‘79.465], log |r;i‘='1'.9652 o=  0-023
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In owder to compute the values of u, =/, we write down the value of
ihie covllivient of 2% in the original eguation,
wT= = 3574~ 3401 + 0923 + 2 + 20, (1)
wiil then the value of the cosfficient of &,
119 =2 'd 1 B +¢'a”y + 200 e a1+ %), (2)
Substituling in these cguations the known values of & bl e} o2,

#5ws have
2=0-G81, u'= —1-125,

whenre v=9-G65, ¢ =1-089, N
oA
The required roots of the given equation are £\

—3.574, —3-161, O0-G81+2.6654, —1-125 4 1-9897, o-p,z*g,"
v whiel values the last diglt js uncertain. ) \ s

e roots correctly lo four significant digits are — 3:018, < 34568,
0464 £ 2-6644, — 1-128 & 19872, 0-924.] : \V/

53. The Solution of Equations with Ceineident Roots
by the Root-squaring Method.—When &lie root-squaring
process is applied to an equation possesstuprcoincident roots, it
does not lead ultimately to an equakion in which every co-
efficient is the square of the co;r«ééi)onding coefficient in the
preceding equation. We shall‘ﬁﬁw consider in what way the
process may be applied to solve stch an equation.

Suppose that the Encke xoots of the given equation 7'(z)=0
are a, b, ¥, ¢, d, . . {Here b, ¥’ are coincident roots, and
swhere |a| > p|> |o] >8] . . . The equation, whose Encke roots
are the mth po;{éré' of these of the given equation, will be
denoted by ."\:/

" -a;%%‘\]iﬁ?"‘l + [amtimlgn =2 + [abm gt L= 0, (1)
and, retdining only the dominant ferm in each coeflficient, for
hﬁge’@afues of m this equation reduces to
&4}&'1?1-&;?3—1 + Dgmprgn-2 g amhEmpn -8 4 (_./'mbzmcmxn—ﬁ +...=0 (2)

Wo see that the coefficient of «*~? does not follow the usual
rule, viz. that when m is doubled the coefficient is approximately
squared. Here, on the other hand, when m is doubled, the new
coefficient is approximately Ralf the square of the old one.
This observation enables us to detect the presence of a repeated
voot, Tt is evident that the value of & may be computed in
much the same way as 7* in the case of gomplex roots, namely,
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by forming the quotient of the cosflicients immedisiciv follow-
ing and immediately preceding the irregular coetticiant.  Thus
from eqnation {2) we have

o i3 ] X i
b= 2/{“?:{)&”/&_7?1.“

the remaining roots, @, ¢, d, . . . being computed us Lafore by
the method of § 54

Ew, 1.—8olue by the root-squaring method the equation \
B4 Ta2 4 16+ 12 =0, "\:'\'
The successive equations are A O
P P17 L RRe 4+ 144 2 0, ‘ h
Poa 4+ 11322 4 2848, + 20736 = 0. (™

P8 @B TOT30% 4 34425 5 106r 1 4-300 x LMD,
P2t 318 x 10702 4 5648 % 10M 4 1NN x 1007 =0,
P2 af+ 1853 x 10%a2 + 1-503 x 10B4.8119 x 1091~ 0,

Tt is evident that the cocflicients of the eifation p& would be (i siquares
of the corresponding coefficients of p32 e‘x’gc}’n in the cave of the coefficient
of 5 We therefore denote the Enakk roots of the couation Ty ey b, b
where b, ¥ arc approximately equial¥and where lef = 1| Taking logs
we have JON
log 4= 152679 payhence log |a|= 04771 and |’ = 3-600,
log f;32€}54=:34-5§3& whenee log 'B|=0-3010 and |bl= 2000
$ 3 = Il"}’ |-

\Q,J
The actnal rools ofﬁle givel equation arve - 3, — 2, — 2,

Bz 2.—@‘0@2&?&6 by the voot-squuring method the greatest roof af the
eguation. )
\\ R S S
\“ ; im+ T =0
qu\ﬁ\.e?‘emlt to prove that the uther three vonls ure nearly equal in modulus,
buisthat only ane of them 1s real,

7N\

&\

\‘;

59. Extension of the Root-squaring Method to the Roots
of Functions given as Infinite Series.—The root-squaring
process depends essentially on the fact that the coeflicients of a
polynomial (in which the coefficient of the highest power of 18
unity) are the elementary symmetric functions of the roots: of,
if the polynomial is divided throughout by the term independent
of #, so that the term imdependent of z hecomes unity, the
coefficionts are the elementary symmetric functions of the
reciprocals of the roots. This, however, i3 true not merely for
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polynomials, but for all entire transcendental functions of genre
zero* and henee we can readily see that the root-squaring
process is applicable to any entire transcendental [nuction of
senre zero; and, indeed, as has been shown by Polyat the
method may be used in connection with functions of any finite
SHDI‘C. ’

Jip. 1.—To find by the root-syuartng method the lowest rools of the Fowrivr-

Bassal function,
The Fouricr-Bessel function may be defined by the power-sevies £

T, 1 # A P ¢
Jom=1=-+." o+, ..
0% 22 9242 224R60 O
52 A ot 6 o7 B :":k
B, S
@IE 3R @R GREOEY %R G5
whure 3= — 3% Bvaluating the terms on the right side O Lhis equa-

tinn, and relaining eleven places of devimals, we have O
X’\ w

Jyi=145+085:2 4 0»027777,73?{ 8
000173651 )1 124

+ 0000068, 2414453

+ 0-008001,529015

+ 0-80B00,0302747

+ $000000,0006 245,

The ecquation whose rools (ig“Elicﬁw’s sense) ave the squares of the
mots of this equalion iy AN
¢\ )
0= 14 0:52 -+ 0-010416,660685% + 0-000038,08024:°
p N + 0-000000,04306.3 4. . .

Therefore the eglus;‘giiﬁu wlhose Toots are the 4th powers of 1he roofs
of the original e:qu{ltibn in
0=1+ Ma%'ég,eﬁsﬁvx +0-000070,012882% + 0-000000,00060224-. ..

and the p‘q‘ma\ion whose rootz are the Bth powers of those roots ie

w\:\, = 1 - 0-052377,3351Tx -+ 0-000000,0046252%
NEvidently we can take
o= SoRE 19-0023,
whence 1= — 14458 and 7= 2/~ = £2.4048.

* On the subject of genve cf. Borel, Lerons sur Ios fomelions entiires
(Paris, 1900}

+ Zetischrift piiy Moth. 83 (1913}, pn 275

I Whittaker and Watson, Modern Analysis, § 17.1.
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Therefore the lowest Toot of Jyfz) 15 2= 24048,

Ku. 2—Caleulate o from: the proparty that w2 45 the lowesi ool of the
series for cos =, te.
2 xt a8

O=1-5 4 5 _ = =
21 3 5t

60. A Series Formula for the Root.—A method published

in 1018 * is somewhat different in character from Lhowe wifish

have bean described hitherto, gince it furnizshes a litesal j‘{«ri_’\mula-

by mere substitution in which the root is cﬂ}t-aju\étl“n The

result may be stated thus: A v
. 7%
The voot of the equation A\ 3
Yat ¥
L & .
0 =i + 042 + 0a2? + 052" + Gy (1)

which is the smallest in absolute value, isJaten by the sories
E 4 ,\ 7

‘..x\ g gty

ANt e iy g

N/

gy fg
iy {iy

i

G_ Gl Vme M egaql
by o [0y Oy aghy oy g ty] 0y g 1y a4
litg o | e a{c@‘ﬁa;‘ gy (| @y @ g )

L0 e !

i dy
1o, At
g 5y

10 oy aq) 0 g oy by
[0 0 gy

As 3 numerical e;@”ﬁhﬂlo, conaider the equation
L 4

@B da? o 32Ta 4 20 =0,

N\

Hore a??\?’g};'alm =321, gy= — 4, gy=1,
ﬁln}t 108121, | uyap a5 = ~33127121, ]agay |= 337,
\“ﬁ;”l |y Oy €y | i) g
Fe |0 g ayi
”{:';”' The smallest root of the equation is therefare
\'"\, ~ 20 20%x4 o 20°xRRT
321 321 x 108121 ' 103121 x 83197181~ "'
or 0:062305,30 - 0-000048,36 + G-000000,79,
or 0-062257,73 correctly to seven decimal places.

The series converges rapidly when the ratio of the smallest
root to every ome of the cther roots js small. In ealeulating

* Wlhitlaker, Proc. Edin. Math, Soc. 38 (1918), p. 103. €L De Morgar,
Journ. Fust, Aot 14 {1868) p. 368,
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any roob of a given eguation by the formula, it is thercfore
advisable in many cases first o transform the given equation
v two or three roof-squaring operations each of which re-
places the eqnation operated on by an eguation whose roots
are the squares of its rools; or else, if an approximate valne of
the root is kuown, by Iorner's process to reduce the roots of
the given egquation by @, where ¢ is an approximate value of
the required voot, so that the required root of the new
equation is small compared with any of the other roots.

Proof of the Formula.—Let the roots of equation (1), supposed \J)
for the present to be of degree =, be xy, @2, . + -, @ne Then r.f\z
Lo any number whose modulus is smaller than eac,h o the
maduli of the roots, we have

N

..,\
¢ - 1
do+ Gz + @+ . - .+ @ (L—zim){1- z;"xg.)\ L —zfzy)
= {1+ 2wy + a4, {1+ afz zﬁa}’

= zw“tzm:,b +..0)
=1+Pr+ P2+ P+, .. &l

" N

where P, denotes the sum of bhe homofreneous powers and
products of the reclproua,ls of the roots taken 7 ab a time.
Therefore \

thy = (an}alz+azv\~\¢ N1+ D+ P+ P+ . L)
Equating coefficients of powers of 2, we have
A\

:t\:": D = t+ aﬂ]-,l!

:"\:“ 0= - av]_P1 + ﬂvu’[_)g,
4 O\ O=azt+d P]_ + ang + (Iul)g,
NS
swwhence *
1 1- a4 dy 0!
a .
Py= -3, Py=—y| 2%, Py= — o @ dido |, ete.  (3)

ty g | tha Vg ay @y

Now sine | 2t %2 |. = y® — gtts, W6 see that the first two terms

g 4y |

* The formutac of equation [3) were known to Wronski, Fntred. & la phitlos.

des ath. (1811}, Iaris. 5o
(o311l
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- of the series (2) are equivalent to the single terin

do b P

- =2 or L {4)
&y Ga Ly,
g (¥

Moreover, by Jacobi’s theorem on the minors of ithe ad-
jugate we have

iy Ly g [ | 9 . ' I\
il Qo 2o O 32 - o fﬁ |
: 3 ; Gy thy 0oy e A\ ¢
0 {5 !’I]_I ; L .f\“\
P\
and this shows that the torm (4), together with t-he‘t)hlrd term
of the series (2), is equal to RO
,\'\ »
| thy Qo | \.\’"}
ty &1 1 2 ) =4
po L or ©)
iy €y ey | z'\&s

thy &y ag"'\Q
0 ag m,l’

* Again, by Jacobi’s theoremye have

3

Ly
a0z | | s a ﬁi’iﬁ}i' & Uz 3 [2 —a a0y !
|G| ay ) asky! Uy th dp Ly @y |
0 aqial 2 0 agar thy 4y @2 |

| OWG\ g 2y ,

8 J

N/

and this s?_1qw§\\ha-t the term (5), together with the fourth
term of the Series (2), is equal to
\¥/
::\;»: ! fy da 2y ]
O\ | o (0 Qa
A - 0 2y Oy ])3
. [ PO N At it
v::;\ ° C0y O @t ] or ry
L) g (B g
\\ t 0 g a

0 Oauﬁil

which s therefore equal to the sum of the firet four terms of
the series (2). Proceeding in this way, we see that the sum
of the first s terms of the series is equal to T, /1,

If now for simplicity we consider the case when n—2, 50
that there are only two roots, @, and s, of which we shall
Suppose #; to have the smaller modulns, we have
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1 N 1 1 1
» =, it STt st -t
'[-_5‘__,L B s-1 iyt Sl %3_1
===
I, 1 ! . 1
— R
s :’E.{x -li}'_) Ilk 2,_322 3-2.1-
1+o %’ !
. ' Ts Tl 1.23—1
e § [
e mlﬁ xls 1 Tyt
1+ - i
Ta bz " sl

and gince ;c < 1, this aives at once
2

]-jw- 1 :\ /

I_.tv T = A}

im0 I_',g .

A
7

wimilar ressoning leads to the same result when 7@@\2

1hms the swin of the first s terms of the sersés/is equal to
P /P, As s increases indefinitely this tends be' the limit a,
where @y is that oot of equation (1), whighhas the smallest
tondnlos. Thus the theorem is established)

o 1.—Find the voot, which 4s amr.‘ulh:s‘t'ﬂlﬁ; absolutte vabue, of the spuatinn
A1 1aa? - 532688010472 =0.
Ex 2.—Find the numertoally -?3‘;{;-i565$ rool of the equativn
P — 355 + %QO“‘Z{‘ 60022 + 19003 — 50O = 0.

61. Greneral Renfarks on the Different Methods.—The
provess of ualculaﬁi]rg a root of an equation f{z)=0 may be
regarded as Gonsi\sfing in general of three stages:

L Locat;;'-\@\?oughéy the position of the rook — This s, in
general, s’ done by plotting a rough graph; in the case when
F{z) iz @wpolynomial, it may also be done by divided differences,
gr;hy'{ahe rules of Descartes, Fourier, and Sturm, which are
\B}}ﬂﬁ.ined in works on the algebraical theory of equations.

11. Transformaing the equation so as i isolate this root from
the other roots of the equations——1et = be the required root of
the equation Az)=0, and let #3, 7. .. he the other roots.
Then, performing & transformation p=¢(y), where ¢ is some
given [unction, we obtalp an equation ¥{y) = 0, which we shall
suppose to have rools ¥, e ¥, - -+ - correspending regpectively
to the roots z;, @2, ¥, . - - LHi8 transformation is to be chosen
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g0 that the roct gy bears to the obher rools Ya, ¥, . . . Tabios
which arc small in absolute value, The root 7 is then said to
be isolated.  For this purpose we may use, for examyple, Jomer's
process, or the root-squaring process or inverse interpolation,

111 Calewlating the root of the transformed cquoli
This may be done rapidly by oue of the iterative meth.uis, e
Newton’s (§ 44), or Bernoulli’s (§ 52), or by Whittaker’ series
(§ 60). Having found 7, the required root of tlo w'ig"i\ml
equation is given by the formula @ = ¢(y,).

62. The Numerical Solution of the Cabic. o ‘:“:r the
solution of eubic and quartic cquations some %Lau?
are available which cannot be applied to equa‘tloms ol hig
degrec. To one of these, known as the t;,z\qéctwn metiod of
solviug the cubic, we shall briefly now wéfer. The tern i
may be supposed to have been remov ed\m the usual waoy, s that
the cubic may be wrilten in the form v

:1:3ij0

b o—

There are two princ 1p11.c‘13.sm to consider ;
(i) It 2797 > 443, the euf)lc has one real root and two croanplex
roots, which may be fouh'd by Cardan’s formula

—”"'1‘(&2 P+ (b - (42 - 2, (1)
or else (if ¢ and\r are both positive) by finding ¢ such that

\ ’\ J 3 e
O cosh ¢ = -
S =5

wl@ﬁhe real root is given by formula (1)

P

™
"

= ~739 cosh 14, (2)

or (if ¢ is negative and » positive) by finding « such that

. 3t »
sinh ¢p="5 - —
2 (-gp
when the real root is given by the formula,

£

2 .
&= Sl ) sinh 4. )
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We can always suppose that 7 is positive, since changing the
sivn of » merely changes the signs of the roots.
.“) Tt 272« 4¢% the cubic has all its roots real. In this
¢ we find the smallest positive angle ¢ such that

a3
COB 4’:?2' 9;)

when the real roots are given by

5 . &
T =—m g 008
SVE SR

3

2 T+ N
R S SN )
s NEL cos

2
Za= —— 395 cos ©

"N

Er 1—Consider the equation '\
31023 9804+ 14 =0,
K7s)
Writing w=4 — 3 to remeve the secon{ téfuly the equation hecomes
P-4y =140 (0

There are three real roots since 4’5&3?2 7.1%
We have af once ™y

\‘“

cos p=Jy . 8fand log cos r#::‘} locr 3 —log 16=log cos 71° 27 5674,
zo that @q; = 23° 40’ 58”8,
One value of ¥ ;&\i@\«; obtained by writing

]00' t& log4—31log 3+ Jog cos 23° 40’ 58" 8
¢’ =0 2252013
=log 2114807,
’\sl

0 "\\ -y1=f3-'11-1907. (2)

'I'\’Q} the serond root we have
AN og (— gg=log 4~ 1 log 34 1og cos (60° 23° 40’ 58”8}

<\, l — 02697010

4 = log 1608086,
0 ig== — 1'BEOE0E. 3
Lastly,
log { - yg) =log 4 — } log 3 4 log cos (60°+23° 40/ 58"8)

94050073
—log 0-2541015,

46 g = — (2541015, 4}
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The required rools arc therelore —0-880003, — 4-860808, — 325410185,
B, 2.—>8olve the equuntion
2B B4 by — 27 =0

Ly the trisection method.

63. Graphical Method of solving Equations——Wo shall
now consider the solution of an equation f{z) =0 by a graphiesal
procedure. We first write the equation in the form ~

Jifs) = ffa) -

{as may usually be done in several ways), and drfm-'\"g_;m;')hs of
the equations y=f(z), y= fo(@). For cxample,fo solve the
equation &* — bz 4 6 =0, Lhe curves might be~t§1k'én Lo be g of,
Ya=4x~6. The abscissae of the points ofﬁiﬁtersectiou of these
curves evidently satisfy the equation %< 0, and are thus the
roots of the given equation, PN

Let one of these abscissae, agltheasured on the graph, be
denoted by o;; we must, of gobwse, rocognise that oy is only
an approximation to the ropt, ince the accuracy of the reading
is limited by the nsual {defects of graphical representation,
To overcome this diffidilty we now repeab the drawing of the
portion of the graph Near the abscissa, T=0 00 a larger seale.
From the new g]iaigram we find & new valne z = a, such that ag
is a closer approximation to the root than a1 Proceeding in
this way, we form a sequence of values a3, ag, ag, . . ., which
approagll' éon.tjnua,lly closer to the correct value of the root of
the egﬂ;ation.
\;f,-ﬁ:—-—ﬁ'ind the real root of the Etion

.."\ COR =0

AN V" correctly lo seven places of decimals, having given
\’\ . cos 427 20" 40" = 0739108,82,
cos 427 207 507 = 0-739076,186,
cos 427 217 (* = 0-739043,50,

and ﬁ"f‘64;8000 = (r000004,8481 37,
Suppose 2 =", then the given equation becomes
0°000004,8481 37y = cos y, (B

We fitst plot the curves

Aly)=0-000004,848137y @
Sl)=cosy ’ o
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nsing the following data
127 20" 40" = 1524407, 0-DOND04,B48137 X 152440 = 0-739000,0,
42° 207 0" = 1524507,  0-D00004,848137 x 162450 = 0-739088,5.

Fig. 12 suggests as a solution the value 4= 42° 20’ 4773, so the first

approximation for ¢ is

@y = TBY0B4, 08,
cos 42° 207 4772 = 0-739085,30,
con 48° 207 4773 =0-739084,08,

and 0000004, 848137 3 1524472 =10-730084,91, I\
0-000004,348137 x 1524473 = 0-739085,40.

Now

S
[ — R ! ,5\ o

\
a O

] p—

N

73505 . y j
40 s 50 Y

R g
R L

Fri. 13

49° 20* 47248, and the valne of the

Fig. 13 gives as a solution 5= ‘
e secomd appro:\'mmtlon fo the root 12

cosine is them 0-739085,14. Th
»l} 3 .
therefore 0y = 0739085, 14,

which is the required value.
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64. Nomography.—Nomography is a special kind of graph-
ical caleulation which differs from other graphiesi methods
in this respect: that with graphical methods genersily it is
necessary to draw a fresh diagram for every problem that is
to be solved, whereas in nomography it is possille ¢ use the
same diagram over and over again for the solution «f dilferent
problems, 8o long as these problems belong to the sime type,
and differ only in regard to the numerieal data cceurtitg tin
them. For example, there are many well-known graphical
solutions of the quadratic equation in which thesrcols are
obtained as the intersoctions of a circle with g,"s‘t};aialzt Tine,
The practical objection to these solutions is thabb Tesl diagram
has to be drawn for each particular quadz:giﬁc equation that
has to be solved; and the time ocenpidd\in constructing the
diagram is greater than the time requized to solve the cquation
by the ordinary arithmetical methed, “This ohjection nu longer
applics if the diagram is of such’awature that when once con-
structed it cen be used for @y quadratic, whatover e the
values of the coefﬁcient{s{;‘ Buch a diagram, in which the
construction is made osige for all and is applicabls to any
number of special cages, 18 called a nomogram.

The detailed treatment of the subject, which is an extensive
one, is somewk&i@iﬁgyond the seope of the presemt hook; the
reader may ke ‘referred to the works of M. d’Ocagne * and
S. Drodetsloy™t ; we shall confine ourselves to illustrating the
fundaggu,tal idea of nomography by deseribing a simple
nomegtam,} by means of which quadratic equations may be
selved at sight.

5% The accompanying diagram consists of two rectangular

AN . , .
\J axes and a circle touching one of them (which we may regard

as horizontal) at the origin. The circle may be of any arhitrary
radins R.  The horizontal axis is graduated so that the gradua-
tion p on it is at a distance 2R/p from the origin, and the
other axis is graduated so that the graduation p on it iz at a
distance 2R/(1-p) from the origin. The graduation at any

* Praité de momographis (1899} and Caleul praphique of nomoyraphie {1914}
T 4 First Cowrse in Nomography (1920,
I B T. Whittaker, Edin. Mizik, Soc. Notes, No. 19 {Dea, 1915), 1. 215.
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point of the civele is Lhe same {with sign reversed) as the
graduation at that point of the horizontal axis which is derived
from it by projection from the highest point of the circle.

b

The method of using the nomngram is as fol

equation to be solved be

a2

s

Fra. 14.—Nomogram for the Soludion of af+re+b=1

lows: Let the

atyap+b="0

Find the point on the horizontol 0%l
and the point on the pertical apis

s af which the reading 8 a,
at which the vending 1s b,
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Imagine these lwo points joined by a straight Nae {eg. by
stretehing a thread between theni, or by laying  siraight- edge
across).  Where the lune meels the clvele, read off the m m?mfwm
on thecirele : these are the vequired voots of the yaod lis,

The proof may be lelt to the reader.

1f the ling is not conveniently situated on the dizgram, we
may replace the given cquation, ey by the cquafien whose
roots are the roots of the given equation with sivns feyersed,
or the equation whose roots are the roots of the giv ﬂg “&qfuation
multiplied or divided by 10 or some power of 10 )

’.

'\

'\

MISCELLANROUS EXAMUPLES ON (Jm\PT] R VI

1. Find the positive root of the equation \
>4

w ot i e {; .

2. Tind the positive root of each ‘(ifﬂu: following equations

M) Tog, 64 (e — 12
. Find correctly o TQUrwgwmhcaut digits the positive root of the
etj_‘li.:ltloll 3

ON 4 Bz =1000,
\\
using either the Nemfon -Raphsen method or the method of iteration.
4, (Jompuno\absﬂe\ en Dlaces the positive rooi of

(@) @log, =18,

R “: 27 4 282% = 480,
5. Lofsgh:e' roughly the real rovts of the equation
:’\“
W

§~\}' ot — 302+ W5z ~ 10000 = 0,
N

ealeulate one of them by the Newton-Raphson method to fonr places
ol decimnals.

6. Bhow by the Newlon-Raphson method that & root of the equation
¥ almra)y— o3~ 243- 0
] 2 4
is g ar__:r_ 5 13148 508

64z 5792 ]6@&"4— T

(Wallis, dlgebro (1685))

7. Bolve the equation
i M —G3L061708 = 0

by Ilorner's methad,

{De Morgan.}
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S\, _'-'L;_]l_lﬂ_\' the root-squaring method to approximate to ithe routs of
o following equalions to three significant figures:

oy 28— —Tu+b=0, (R} e+t = b+ 2=10.

. Find by the root-squaring nwethod the numerically greatest root of
1€ wyuation
428 1 1282% — 9507 + 24w ~ 220,

i determine the nature of the remaining roots.
10, Slow that the rootsquaring method may be applied to determine A
{

e coineident roote of the equation

gt~ 1043 + 3522 — 50n 4+ 25 =0, '\~\
11, Determine # from the eqnation \ \>\
z=gsin (n+ 2 '(\:‘
where e is the eccentricity of a planet’s orbit, \:..,:\‘ ”
\/

#n is the mean anomaly,
== 0-208, n = 30° = 0-5230988. <)
’\ w

ADDITIONAL REFERENCES, "\

aving given the valnes e

A, Ostrowski, © Rocherches sux Ia méthode de, Craeffe ™, Acta Math.
2 (1940), pp. 99, 157. N\
L. Collatz, * Daa Hornerse
ingew, Math. 20 (1940), p. 235. NS
H, §. Sharp, < A comparisen of glethoas for ovaluating the complex
oots of quartic equations 7, J. Maths Biiys, 20 (1941), p- 243.

8. W. Lin, * A method of sy Sgive approximations for evalnating tho
l%cg ), J. Bath,

he Schema 'kgqi:‘éoﬁpla,zcn Warzeln ¥, Z.

ol
Ly

eal and complex roots of eub nd higher-order cquations ’
Plys. 20 (1941), p. 281 )

A%/
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CHAPTER VII Q)

NUMERICAL INTEGRATION AND SUMMATION,
’\
63. Introduction.—In the present chapter \ze blml show
how to ealeulate the numerical value of a dehuihe integral

] ¢
f o)z "‘\

when f{z) is a function whose numez?ﬁ:;al value is known for
valuss of % between « and 5. \ N

In works on the Integral C‘alculus it iz shown that the
above definite integral can? bé found, provided we can first
find the indefnite mtegml of flz), say F(z): for the value
of the definite integral¥s then F(b) — F(g). This metbod 13,
however, of very lifited application: for even when j{x) is
gnen as i mmpo’u}zd of the well-known elementary functions
x*, ¢%, log x,\fs indefinite integral cannot in general be
exprgssed‘g.s”gz compound of a finite number of these funetions:
and w heﬁs #(®) is not given in terms of the known elementary
funciubns but is merely specified by a table of nuruerical

ues the indefinite-integral metbod is altogether inapplicable.

“'.T ¢ methods described in the present chapter, which are of

A general application, are therelore of great practical importance.

The problem of caleulating the sum of a sequence
w Ut UgF Uy E. Ly

is closely eonnested with the problem of numerical integration,
and is therefore included in the dircugsion.

66. The Approximate Value of a Definite Integral—
A definite integral
[T o
j Jla)da

132
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may be regarded as the measure of the area included between the
curve y=f(x), the ordinates g =q and z=a +rw, and the axis of 2.

Let I and Q be the two points on the eurve whose abscissae
ave « and a+rw respecuively, so that the avea in guestion is
PLMQ in the diagram.

Leb the base LM be divided into 7 parts each of length w,
st the points U, ¥V, W, . . ., and let the corresponding points
on the curve be H, J, K, . .. Then we have

avea of quadrilateral PLUH = Lwi fle) + (e + w}, Ke \
» » HUVJ = 1w{ fla+w)+fla+2w)], | \\
cte., \.

¥ ] '\ s

] ’Q )
| / ¢*¢
. W
B ,
ol
&N
AW
A\
AN
N\
'{”}i
X
o L uS, W W M x
£ )
o Oud Fic, 15.

P,
and the suth;“f)f the arcas of the quadrilaterals PLUH,
HTUVJ,

- w[}jm) +f(a vy +fla+2w) 4. . Hflerr-Low)+dfad 1)}
'j?h:ls sum may be regarded as a 1ou§5h approximation to the
\&Dea PLMQ, so that we have

1 ot .
ﬁJa Ax)dw=1 fla) +fla+w)+fla-2w)+. -
+fla+r-L1.ow)+1 flad rw)+ T,
where T denotes certain correction-terms.
We shall now show how these correction-terms mey
be found,
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67. The Euler-Maclaurin Formula.—Lel ug censider the
case in which the function f{®) is ¢ where % is independent
of 2. Then the above formula becomes

1 +rut
_ 8"1d$= %ﬂm- + cu(a-{—w) o E;ru(m-[—ﬂw)_’__ 3 ‘_,’_er.!d-i-(r—'l)r;ir.!
w L *
+depr e U0 (1)
where T denotes the correction-terms; or (performing the
integration) A o
1 A\
£, ST A\
% _____ ) — gttt {1 + v . 6%“’-{-. . ._',’_{,:('i'—l)‘!,‘tf‘} 2. %Ct'a"’:f'-':}'{r:,}\lj +7T
altef g 1 “.( "S
S e 1), (D
\::‘\
A1 T v/
80 = NER 2
P, W] % gm(cm-ge\./]) ( )
P &/
Now we have \
1 1 \ 1( g o AR
e — e P DA .}
e NG A /
T2t :ﬂ ¢>~”l‘
( &Q 6% + terms in 64, etu)
1 )
X 9"’+

19 2 1z 720
It is uuhMary to write this expansion

,\M.
1 11 Big_ Bags W Bags :
o§" -1 :9 2+‘)1 4r6 ()19 & (3)

’sshere the numbers B, which are called the Bernoullion
»\)wn mnbr?‘s have the numerical values

w1 oo 1 1 1 5 691
Bimg By Bamyy Bimyy Bomge Bomgpg

Comparing equations (2) and (3} we have

T = gra{errw _ 1)( - ]jll? 5+ 22]1:%;:3 - %'55-?05 +.. )

Now if f{z)=e", we have f'(z)=vew, (@) =vtem, .. . and
therefore when f{z) = ¢, we have
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- By, . . Ba® ..
lz—ﬁ{, {0+ rw) —fla)} + i {f7a 4 rw) =" (e
B, .
= gr 1+ rw) =@+ .

so that in the case where j(x) =, we have the formula

félr.f.‘b‘,]"(w)dﬂ:: 3 Ae) + fa+w) + fla+2) +. ..

1

w «
+ fa+r—1.w) + 3 fAntrw)
Bpe, o R N T s g
—ﬁ{ S a-n) — f ) + %-!—{f (@+rwe)=/"a)} Oy
B . ()
__gaf}—{ Y@ +rw) = (@) +- . - ‘(\'ﬂ
or, as wo may more briefly write i, (0 ’

l i Tt i, . 1 N
wL Swyde = (Q.}‘u +f et o Bt Zﬁx)\\«
3 5 ¢ { ) _
R R T R v n U AR

Now let f{@) be an arbitrary fupefion of @ We shall
asswwe that it is possible to repryﬁ@h‘t /@) between the finite
bounds w=a aud z=a - to asufiicient degree of approxita-
tion by means of a sum of terms of the form: A, where A
and v are indcpendent of i say leb

(}“(ﬁ)=A€N¥;A26“@+AB€‘W+. .
where A;, Ay A . 5 ¥y Tz, T . - - OIE suitably chosen
constants. O\ /

Applyir;g\‘f@\:ifuula (4) to each term of this sum, end addi‘ng
the resulfywe see that the formula {4) or (5) may be applied
to such'gn arbitrary function f{z) in general. It is known as
t-he;'ﬂﬁzﬂkr-ﬂfmcﬂawén Jormaln, having been discovered inde-
pé\@xiﬂﬁbly by Buler and by Maclaurin in the years 1730-1740.*

4 105

¢ Fu—To compute f s correctly to eiyht plazes of decimals.
w0 #

-

In the Fuler-Maclaurin formula put &= 100, w=1, r="5, fld=

* Tn both cases the puhblication was several yeurs sibsequent hm the
digeovery. Cf. Euler, Jomm. Aeaid, Sei, Fmp. Petvop. 8 (17 a8l p. 68, and
Maclanrin, P'reatise of Flwwions (1742} 1 672.

N
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-/fhlls

f‘”“dm_1 1 1 1 1 1T 11

| T2l

oz 2106 161 08T Te8 Y 1oa T2 Ths

1_(] 1\{1( .ll_l\'
T12h, 1052+100§)”12?} T105T T oo, v

— 0-005000 000 1/ 0:000100 000
0-609900 990 ~ 18k — 0000090 703
0-009803 922 ~
0-009708 728
0-009615 385 A
0-004761 905

=0-048790 940 — 0-000000 Y5 AN &’
=0-048790 165 !

The ealeulated value of the integeal is t-here.fqrc,ﬁ\-éﬂ“i-iTEJO, 165,

This result may be verified by computing lf}gj (1056/104) irom the
logarithmic series, as follows : N
> w

g 10B_ 8 1 5% 1 st 1 %;).\1 551 5
300100 2 1o * 3 1005 AGnG T3 Tor 6 Toor

ES

»

= 0:030000 000  _\ ¥ —0-001250 000

*>

+0-000011 667 &N —0-000001 562
+ 0-000000 06253 — 0-:000000 003
= (050041 788" —~ 001251 565
= 0-043780,164
which agrees witK.Q:‘Ie}previoua result o one unit in the nindh place of
decimals.

68. Application to the Summation of Series.— The Kuler-
Maclagtti%.‘iﬁrmula is often nsed in the computation of sws,
Whe;l{f?he integral which occurs in it can be calenlated by
-0‘5@1»%11&{:}10(13; the method will be obvious from the following

@}am'ples:
"'\:“\:"; B 1L—If it s tequired fo obtuin eorrectly fo nine places of decimals
\ V' the value of

1 1 1 1

201 " 20s2 T go5E T ¢ Togge

we have from the Euler-Maclaurin (ormula with o = 201, w=12, r=150,

f(.’b‘) = ];mzz

_1_[3°1qu_:5_1 1 1 1T 11
Sy @9 2012 ToosE T “T3902t 3 5012

1 2 2 )+
- ﬁ(“ 3018 T 9013



NTUMERICAL INTEGRATION AND SUMMATION 137

Sy
] g__+ 4 1 1( 1 _l _Ll 1 1
2902 21201 301 'E(mﬁ‘ﬁﬁ)
o)
apid 3013} "

= (0000824 43256

0000006 8375
0000000 0288 O
= (-000833 319, which is {he required value. £ "\
vw. 2 To evmpute the sum of the infinite series \\' -
1 1 1 1 A\
JorEtom T o To T : R
Tf in ibe Huler-Maclanrin formula we pub fe) = 1/f80% 1\= 2, r=rc,
we have
o1 1 1 1 AN 4
R e A PRy VRN RSN L
g that A : v
1 1 1 1 L7 1 4
RN T R e RV N VR T e
Puiting u=101, this gives Q‘;;’“'
1 11 AL L 1 4
o Rt T S rol oo T T0T T TR 0018 |
\\ Z 004950,49505  — 0-000000,00003
\ + +Q0004%,01480
3+ 0-000000,32353
{ “\ ¢ = 0:004909,83335, which s the reguired s
Tz, 3, F&almte correctly to ten places the sum of ¢he injinite serdes
N 1 1,1 1
"\.;;.\ RIS AT AR
“\\go. The Sums of Powers of the Whole Numbers. —The
rst # whole

\ums of the first, second, and third powers of the fi

nuizbers are, as is well known,
+ 0 =int+dn,

1 +2+3 +...
124224824, . . rnf=00+ in?+ {n,
13+ 20+ 3%+ +pd=1nt+ 40+ Lal

We shall now show that the I nler-Maclaurin formnula
enables us to find readily the sum of the pth powers of the
first » whole numbers, where p is any positive whole nurnber.
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Yor taking == (} w =1, f{#) =¥ in the formnla

_f ;”0+f1+f2 : +,1+9/)

"

FThs

+7‘26(f" /) =04l Ao

kig

_( "= 4}

we have
Pl
i 2+ 2r 430+, . o+ {r-1)7+ ;1);'1’ - 3]52”'11_1
p+l < 13 A
1 N
+rpgPlp = L)y - 2pr? Oy

1 -
~ 3502 (2 ~ V(2 - A(p - B)lp - HEFT. -
and therefore N

RS :
sptl . NN — YR
1# 4 22 4- 3,‘0.{_. .. +'i'°p=£i7'+—|'.'+? + 'lp‘j.?p L"’ij (p _sz' ___)_.}.p—s
. pw’}}z}-'?)(p T
C 5‘0340

the last term being that in » ofJ®.
This is the general formu‘ia‘ for a sum of positive powers: ib

was first published in J a‘m,es Bernoulli’s posthumous work, Ars
Ponjecta%dm in 1;1‘3 @)

wdd Bk powers of the first o whole
numbm e dﬂﬂbﬁf’ the ,‘Sgumc of the sum of thetr cubes

We have af onee
23 34, L Ltat= b In® 4+ Fon® — Tt 4 fon®
\,/
Chmlla&v »

s 15195 .36, | +:1°='?L'3+lr%°+17?34“i1'-3n2'
\W'e have therefore only to prove that
t%n,s A n7 4 0l — Tt La® g (Jad 4 Inf 4 St — -E'n?)

= fd(n + 1
which is evidently true.

70. Stirling’s Approximation to the Factorial.—Iu the
Fuler-Maclaurin expansion

1 +rw ’ J
o, Jeblem(hninsin . af ) - U )
?‘t;a 2 3 2 -

gl A

® drs Cong. p. 07,
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write w = I, f{) =logz. The formula then gives

;{ | loga;rixméloga+log(a+l) .. +logla+r—1)

it

1 1 1 1 13
+3log(a+n) - g i) Faeol @@

ar

{icn+r+%)log(a+r)—<a+é) loga—r

N

1 Oy
— ¢ ' L L&\
clogfas @+ . .. [a+n) u(a,w aj‘
+i _..'l'__.l - AN
360(@, nk a3) T N 3
Writing » for {a +r), this becones \‘\"’;\\
(n.+ )100'% (a,+2)loga—n+a log (n ) ~leg (¢ )
RYCEOE EEAR
2 @ +_FET} PN
We have therefore ; ’
1 1

10@(?%1)=C+(ﬂ.+)lqg T AR

where C is 1ndepend&ntmo£\m
In order to deter({i{le’(? we refer to Wallis' formula

It( 5_4 4 6 G 2n 2n )
__n—;w s 3 557 2n- 21 2a+1
'\“ = 2% (n )t
* £ \ . F— ——— L e 3
T A o=, 1) 2n 1 1)

and«th\refore

”\ 100 T o Lt [4nlog2+4 log n!— 2 log (2nl) - log (2n + 1]
\ _| P

Substituting for the Jogs of the factorials from (1), we have

]og—— Lt [4%10g2+4{(?1+1)10gn n+0}

H=—3x

- 91(2% + 2) log (2n) — 27 + ('} ~Tlog (2n + l)]
2+ 20,
s0 - (=3log {2},
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and finally

. 13 i I L
log (1) (n + ) logm~n-+ log B+ o~ v
or ?b!:n'“‘"%’J%'8"7’(1+‘L+. R
12n £

This formula is due to Stirling:* it is of greal value for
computing the factorials of large numbers,

i /E.r 1,—To rompute Tog 1479 1% O
In Stiding’s formula, replacing log (n1) by {log(n — 121 #10g%n ] we
obtain A\
1 ] « \J/
log jofn — 131= (n - 2—) log 1g1t I 3 log 19(27) &N

) 1 1 {1 }
My~ — o= # - N
+ l{ " o T 36053 T BebE  iceont

where M=logye= 0434294,481903,251528.
Taking =280, log,30= 1-903080956901,9423586
tnd 79-5 10g 1080 = 151-205653,065859,615
then ::‘:"
log (79'-):""9"'3 T 804_1] ”:}f2 Yok _1-..J_ ._._1 \
1075 = TR0 081050 + o &0\ et M 1956 T 1260.80°/
N\ ) 1 1
" ‘M@O* 360.908 s—snﬁ)
A\
= 151-29%0%3,065859,315 — 34-743558,5562260,146
£09089,934179,058 - 0:000000,002256,198
N.0600452,390085,316 —  0-000000,300000,000
5 \0:000000,000000,105
NE151-695196,200128,994 — 34.743558,554616,345

\\ = 116-951637,735507,849.

O
T}\ns'“is the required value correetly to fifleen places,

;". B 2—Show that

3

it +

A . R wo, .

EL J@yln= [yt fs+ i+ )+ 5100 =D
Twd 3yt

_ _Il‘..fff_ trr . T_ "‘_ -
760~ ) 5igeell ~fo?

71. The Remainder Term in the Euler-Maclaurin
Expansion.—We shall now investigate the error committed
by truncating the Euler-Maclaurin expangion ab any term.

* Methodwus diferentialis (1730), p. 135V,
T Jacubi, Journ. fir Math. 12 (1834), p. 285,
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Let a set of polynomials #1{t), $alf), Hs(f), . . . be defined

by the statement that ¢,{f) is the coefficient of & fn! in the
T g =1, .
axpansion of s. oo o ascending powers of 5. We readily

find
)=t dlt)=tt=-1), )=, ...
The polynomials ¢,.(f} are called the polynomials of

Dernouwlli* N\
From the defining equation oY
P\ K
e®-1_ 3 Paff)s” § i‘ff
e -1 -,r;:'L 73 (N;&.

ve see on pubting t=0, and {=1 s1.1t3cessively,@h§>£"kzll the
Bernoullion polynomials vawish when t=0, andodf of them
efter the Jirst wanish when t=1. ::\\.}

Moreover, by differentiating equation {13, with respect to ¢,
we gee that \Z

NY

© @) 5 AR s

Fafu e DEIEIEN AN
L\ Y

- R

Remembering that N
m\é;\ B182 ]3234 .

5

gs—_f\l\wz* TR VIR

and equating coeffi¢ients of powers of 5, we have

LO7 1 =hi) b (2)

s"\i:‘ —-l;(lf)‘r;(f) = (f)g(t) 4 Bl! (3)
N 1 (£) = halt), @
N\ 145 (1) = bull) — B (3}

andhdo on.

/Now denoting by f(z) an arbitrary function, we have

L DE_Hj/(cvs) da = wﬁ: o +wi)dt
= %’: Fla+wt)d(2 - 1),

* The name was given by Raabe in henour of James Pernoulli, the author of

Ars Conjestandi.
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and, by repeated integration by parts,

}TU( )ri"oJ—‘) e +w)+fla)} -~ f (2 =-0)/"a- wiji
=5ifla+u) +fla) - f S (@ wt)ddn s

_2.f(a+w )+ fa)) + f YA I (1)
But b_y (3) we have \
:,J $a() 7 (@ + wt)di :\,\“\
Blwff”a f'?ﬂ?! (f£+ J’(:,(Ja a-—/‘li,k) f7r
_ By? _
= S:‘ e +w) - fa)) w[}“\fa-rw{fﬁa“ B
_ Buw?, .
== ferw) -y _\;k?f (e wt)e) (7

I

- 2" ,f(a—Lw f{a)‘} ;—4[[ bt} a4+ i) {7)

On substituting from (“'}.m (6) we liave

T u’f"
[ =i ) iy - B ()~ )

."”\ w-’
\'\ J +‘:L %({)f“(a-}-ytjrﬂ, (8)

But bv (bl we have
4J @(é‘ (a VAl

x\{

N [ (e )i+ [ b0/ (@ + wh)dl

AQ) _1 Bzw‘i

~O a1 ) =1 @) -5 [ e gl

s —{f" (& +w) —f7(a)) f"ﬁ’ﬁ (/e +wtdds.  (9)

L'ubfsbltuung from (9) in (8) we have
[ Haydz =" —f/(a -0} - fla)} B;-, e+ w) = fla)}
Byt
4T

4‘ e+ w) — 7 (a) 6[% ()< (a + wi)dt.
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s 15 the Buler- Meaclaurin formula with o vemainder-ternt
cxpressing the error committed when the series ts truncated af the
tering involving the third derivatives. By proceeding in the
samie way we can find the error committed in truncating the
Juler Maclaurin expansion at any assigned tern.

I f{») is o polynomial, the Euler-Maclaurin series terminates
apd 18 exact.

79, Gregory’s Formula of Numerical Integration.—
The earliest formula of numerical infegration to be discovered

N ¢
was one in which the eorreetion terms were expressed in termsg\Jy

of differences instead of derivatives. This formula, which 1s o)
great usc in practice, may be derived from the Euler-Maclasin

formula in the following way: ¢*C
Tn the Fuler-Maclaurin formule \

T pren 1. 1. U, I

T = (iAot feat L =)

st hy Oz

2

+ g7 =) N TR LER

23
1at us substitute for the derivatives from the equations
wfy = Ao — 30 + ¥AYe — JAYY R o -
vt = Aoyt SV gt YAy b At WY st
W = Dy AV + TATREY
WAL = A g+ e_z-A%f;.;\itf;‘ﬁS/i,_ﬁ Foo
o =D N
= A 0D
ate. N
It may ét}r@ﬁmﬂ;ed {hat the formulae for the derivatives of f are
given 1dg\35, and that the formulac for {he derivatives of fi- may e
obtzingdipy forming & difference-table in which {he entries are reversed
in AGE, 18 fin Fr_ v Frop oo o Fo fo and applying the equations
f§ 26,
Thus we obtain

1 ot . 1 1. 1 .
Ej: flayde = (2ﬁ +fitfete -+ff—1+§.fr) - 13(B -1 Afo)

, , a . _
B 2%1('&?}" roe + A%0) - %%(AC’ZF s — %) — 160 (A3, _q + Alfa)

963 o e 27D e L
"EU‘L@-(A':!‘:'—S"A(fn)'24192(..\'?/,-_ﬁ+ ASF) = v -

N
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This formula was discovered by James Gregory:® like his
formula of interpolation (§ 8}, it does not require ordinates
beyond the limits 7, and f. in order to form fhe differences,

On taking fiz)= %, w=1, a=0, the formula becomes

v — 1 . 1 1
= (1P A, T g ST —1)— Tl =

p i

i 1 it 1,
+ 1}\31‘ ) _ i(l — e i,}acrn _ §.4.<,31. . 1)‘2 [ "
which evidently breaks up into the expansions N
1 1 1 1 1 19 N
P [ S 1 L fat . TNE L ~u_-\_3,_‘:‘ N’
2 w1 T T A ggl I gl - Y el
)
and W
1 1 i 1 19 4™
e - __ a2 -
ik peve i Rl T\ A A 24” i 720\@ T
which are the oxpansmns of "‘\

log {l—r(s”-l) and - log: g[t' (l—@ gy

respoctively,  The numerical cogfictents fbs Gregory's formula g t‘i‘!v’?’fﬂfme
the sums ws those which octur in (b e:LjJaﬂ,swn of = {log{l -}~
ascending powers of @ D

That this must bo so maysbe Been ab onee by symbolie re ‘,comn.g ;
for il D denoles the operatignvof differentiation, so that D~ denobed
integration, we have (§ - 5)“ 3

T =H=1 + A,
and thercfors {\
" {1 1 -1
D-1— . _ S
O Tl (T A g (1 AR

whenee G}regi;-ry’s formula may e derived symbolically,

]"\pteiaélioilb for the remainder after % terms aof several lormulae of

nume}n@lomtegmtmn of this type have been found by II. P. Nielsen,
Arliiv For Muath. Astron. och Fysik, 4 (1908), Nr. 21,

'\\w L—S8how that the cogffictent of — {Aﬂf,. mk A?%} in Hrcyory's
rinlo 18

(-1*L 1T 0 0 0...)
I £ 1 0 0.,
i or1oo..d
1111,
. [(n+ 1) rows]

and that it may also De wrilten
)ﬂj J(’t—l){m-g) ('a:-—n-f—l)d'x'

n!

{Gaisher.)

* Tetter of Gregory to Collins of date 23rd November 1670, peinted in
Rigaud's Correspondence, 2, p. 209,
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105
f dx
wo G

correctly fo soven places of decimals,
By Gregory’s formula, the infegral is squal to

B, 32— To waleulate

Ladptrbet mbetaveta Tt Fabr - TeAfn Afreo
— 8% + B%f100) = T Alfoo) =+ - -
7 A, AZ, AR
1, =0-010000 00
— 9901
k= 0-008900 99 194
- 8707 -3
L, =0-009803 02 189 O
— 9518 ~ &
L, =0:009708 74 183 W)
- 93353 w6
3, =0-009615 38 PN
—9158 LAY
1, =0-009523 81 NV

Bulsiitnting in (1} ihe required diﬁm:gl{c}gs, we bave

145

" di _0,005000 00 ‘,}%,ﬁi‘-9158+9901)—§11(177+194)

Jwo® 1 0.00890099 L Y
+0.009805 93\
+0-009708f(g,\
+0-0096}Q\3
+0.004781" 90

»

0648790 93 —62 ~15
(297045790 16

£
The m({m\ value
”{"332‘3.——(}‘@'1'0:@ the tabls
a \ Y

N/

U

957626,609801
287757,430208
287588,218227
288019,036664
288140,805125
358280,793016
988411,730543

T B

compute f Fli)d by the Grregory Formuls.
1

(D311)

is therefore 00487902 correctly to seven places
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Eu 4—Crloulate
a0
d-,t:_

oy F
73. A Oentral-Difference Formula for Numerical Irtegra-
tion.—The formula of Gregory

%j’ﬂ()aﬁx (5 +hi+fet --+fr_1+-§—f;-)

; - 9 - s“\
E(Afa-—l - Afy) - 54(3%—2 + AY) - .—9 (—\3}" —a = A } *

O\
utilises differences which lie in lines sloping towards.mc éentre
of the difference table. lvidently there must exmn & corre-

sponding formula in which central-ditferenceg) \are’ used, and
which will thersfore be of the form X ~\\

L et (Gah s -;2-'_,;.;)
Ay MDA
K A{ 3 . }

W2

+BIA%, | - Aaf";f
(”fhlf_. 1+‘ﬁ13f., fﬁ.af_l-FAa:’f__g}
2

+D1_§%§\ rA“f 2f

\\ (1)
where A, B{€, D are coeffizients as yet unknown. To
determing\thése coefficients, we may transform the derivatives
in the/Biiler-Maclaurin formula, or more directly, we way

WTI*QJ}SG} =¢*%, 4 =1 when formula (1) becomes
p(a.\r)a ettt platrie _ sy

1 ) . N ,
NS 5 T T + _2{g(ﬂ-+?‘)b - ¢} + A sinh ‘U{e‘-(“ £ . gam)
+.
i 1 L1
or R
» ity +Asinhw+.
or

1 /1 » o 1 2
5=<'v—:3-l-1—2-—7—20+-..)+§+A(fu+~+...)-r-]}(@‘ﬂ‘..)
+ 0+ L+
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Eauating coefficients of powers of # we obtain

1 .11
A= -y B0, C=pgpo .

and thus we have the formula

.%_J:H-rv.- o= (%fo L A+fed. T it éf,)

LA e Af A+ B/ )
L {8t My Bt M) A
11 {A-‘y,,_lmé,q,;z B+ Ay O

+72U 2 - _2_ . .\..3 o

‘his formula, which is extensively used by astronq;ﬁ\é‘f@ in
she calculation of perturbations, is in general m o rapidly
senvergent than Gregory's; bub ib involves valueb of / outside
ihe range of integration. ,\\’;

Fu. 1—8how that the above formule mdy ha:.‘@i"(n-r'ﬂcd by Tnteprating
srith respect to m, between the limits O and 1, tha :z'n}crpoi'faiion—fmwuIft

e gy J0 g = 1) A A
Hatnwy=""5=+ fn— DA+ — 57 “,:';:"‘ 2

W= 1) (=P gy M- L= 2 AY gAY
g AR gy J *

\
Ex 2.— "9 caloulate ﬂ-_qu\am\ihe formula

\\ 7_-‘_‘ T de .
O 4'_L T 442

fop \
t’"’

e . A\ X
Taking w 3 '{&'9-= 10 we have
U da (N 1 1 1 1 1 1 1 1
10 OALT Y L Lyl ke s T T
fu 1-;-\'5\?\ 5500t Tar T iga T1ae T Tae e 116 T 100
Wt 11 1fAne+ AR AAFATA

O Tretrortre Tl e 2
) - g
Y Ef?‘%‘_ﬁs_‘ﬂf__l*—\';f;z_}_i_
720l 2 P) T

[TanLE
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£ A. AZ, A%
foa= gy = 09615385
285605
Fa= gy = 09900990 — 186595
99010 11435
fy = 1_2 = 10000000 — 1980320
- 99010 11158\
£ = 08900990 - 186595 N
Loy T <\”}\
- 285605 A\
1 ’ O
fo = — .=0-9615385 a ¢
i-04 )
>’
L 4
7 —i—osogmm \Q\“}
8 Tl.6g O
- 572699 2
1 O
I = 1oy = 05524862 PN 47837
— 524867 1512
1 ‘:“\x -
Juo =25 = /5000060 }:’:“ 49749
NS 4TE11S _ 1162
1 ,%\ -
n RPN 0- 4504‘{ 48587
Q\ \/ — 426526
T _ b _ £0:4098361
. 2.4
We lLave t{”&;‘&d)ore :nmlectmg differences of order Ligher than the third,

07' T4+ 7%

= 0-2500000
0-65524862
0-6087561
0-6711409
0-7352941
0-8000060
(+BE20650
0-9174312
0-9615385
0-5900900
3-5000000

= T-8498150

=7-853098%%.

(—499988 0)+_ (3,0—0)

+ 4166646
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Therelore
p—d x FTEH305832 =3-141552,88
wirereas the corvect value of 7 iz 3-141592,65 . . .
74, Lubbock’s Formula of Symmation.—In the Euler-
Vaclaurin formula

1 rib-l-wit
A

; et
iz jc

a4 ofo - 4 =) -l =)

i

s B R -

supposc that each interval is subdivided into e parbs: L}ké\.

Tnler-Maclaurin formula corresponding to the division is y ™
ait e . N 1 ‘"'( “:
N’“ Swydw=(fo+/r +/e+- . o) _Q(ﬁ’ +£7) 0

“ e " ~

2t 3 v/ 1
_1%£Uy—ﬁj+ﬁiﬁﬁﬁﬁ—ﬁ y ..

Tliminating the integral between these ‘tw'(: euations we have
fotFotfe iyt ot fr= oA SO )

i — 2 _ W ot 1w, s
B R M

This formula enables us to deduce the sum of a large number
of values of the functiongfaken at any interval from a smaller
number of values of, {e ,}unction, taken at intervals # times
greater, \ \\

If the derivabiwes in this formuls are replaced by their
valies in termsof Adifferences, as in § 72, we have what is knowu

as anbort}é}l{ﬁ'}r}mula,*
Y m

"/ -1 .
Jo v fa L%— et frmm(fot e +S - —'2—'(fr + /)

y N m2—1 N ('mfzrl)l .
Q‘:”\ - ]fm_(ﬂf?'-l - /) =& (32(/,--2+/_\%)
(m2-1) (1972 - 1) ar _ po
B _-_TQ(”}m"f (‘\f’"‘3 fo)
(21 (2= 1) e avy -
T 480m® (AY-a Ay) -

* T. W. Luhbock, Caomb. Phil. Trans. 3 {1820), p. 523 The furminla 23
given originally Ly Lubbock invelved advancing differences of 73 the formmla
here given, which daes mol reguire a Lnowledge of 7. for values of greater
than 7, is due to &, de Morgan, ¥ Inf, Caleg VP 317.318, § 191, leway L
obtained readily by the usc of symbolic operators 3 of. T 1. Sprague, J.1.:1. 18
(1874), p. 309,

N
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Eeo 1. — X% calewdite Hhe sy
1 1

Toor Yozt io@ T - FTgor
1
Tt m=10, w=10, and form ithe difference tahle of Jrad =@
t
1
heginning with the value f,— To0¢
= 0-00010000
- 1736
J, = 000008264 116 2\
~ 1320 —123
£y == 0-00006944 203 AN
- 1027 ~ 81 AN\
fy=0-00005%17 212 WA
813 _ o
F=0-00005102 157 :
— 58 o\ N
fy = 0-00004444 v
By Lublock’s formula we have o\
$
150, ]

. . 9 L H9 , .
{%(n}_z) = 10{]0 +.)+1+‘ . +J'r5) _“2({5 ‘}‘fj}}x -]' é_OKA.J'rg_ [lfu;'

. W% 1808
N 99 x 899
._‘7.{_. LT 4
N\, o000 (AT AW
=406710 — 64098 ~BED.25 — 23636 — 17-70 — 19.61
3408656, <\
The required valgegbherefors 0.00340356.

\0\
Fa. 2.—Bvdlpale to sevsn places

a5
- ém(A%ﬁs + Al

5.

#

*»
N

7

\/ 100
Qs > _1_
N\ %/ =

{ r=50%

E:c“\.?%:;gfco-w that Gregory's formule may be obtusned byt making m en-
C-?‘eg&{{@ideﬁ-n-imiy e Lubbock’s formula,

~\7 5. Formulae which involve only selected Valuez of the

~JOFunction—If the function which is to be integrated is such
N/ that its dilferences beyond 2 certain order » may be neglected,

L |- . .
the formula of Gregory (§72) enables us to express Slw)de in
[
terms of the values of # and its differences us far as order =,

ab selected values of @ But these differences can in turn be
expressed in terms of selected values of £ by reductions such as

A.ﬁ! __"-/‘1 _Lfor Ag./{;) :.f?. - Qﬁ +‘/;3a EtC.,
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Fea
snd thercfore it is possible Lo express flz)dx entirely in
&
corins of values of / at selected values of @ Among tformulae
of this class may be meuntioned specially the following,* which

are accurate for functions whose fifth differences are constant:
pERy

{ . ) - . .
J!_ ‘fidw = ']."U'(frz- + 8 +fa-+2 + Gfa-f—:i +frz+4 1 O nts +Ja-i'(‘.)'
(Weddle.) M

J ;r:zdx 09&’(]40, Ia+6)+162(/‘all+fal'5)+29fa+3 "\:\.
(G. F. Hard}}

=10
{77 futts = 58U+t + 35 e +foma St w )

+1')(JT& 2+fa.|i4fa+ﬁ 'fa“.:} .56}‘"_}_5)),
{Shovelton.)

These formulae may be proved d]rectly\ ﬁ}ﬁhout reference
to Cregory’s forwula, in the following way}

Tet it be required, for example, to prove the second of them
(3. ¥. Hardy’s formula). Since fabls a fomction whose fifth
differences are constant, we can~‘represent 7o Ly & pol}'nomml
of degrec 5 in w, and thercfore: by a polynomial of degree b in
the variable z, where 2= .T\— &~ 3, sny

Fu =1 umw B2t + 4% + 3t 4 e, (1)
where o, 3, 7, 8, ¢ are\hdependen‘o of 2.
Ther: efore R4
f 33,;:1::; f (forghaz+ BB +ya + &b - 2z
486 ‘
= 6f,g + 188+ =75 (2)

al
S

“I\ow Jet us see if this can be represented by an expression

&)t’ the type
(fﬂTjnfﬂ)+B(.fn+1 }}fﬂ a)+(ff( -3 (3‘)
where A, B, C are ahaolnte constants. By (1), {#) may he
written
A(2f, g+ 1RB + 1628} + B2, 15+ 8B +328) + Gy (3)
Since the expressions (2) and (- {) are to be identical, we may

% A valuable discussion of formulac of this type 1% given by W. 1. Slieppard,
Proc. Fond. Hath, Soc. 88 (1900), 1 2383 and a r]cialls.ri elementary treativent

by A, E. King, Trans. Fae, At 9 1923, p- 218
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equate the cocflicients of Jets B, and § in them, and thus
obtain the equations
2A+2B+ (=6
18A +8B =18
1624 + 328 = 430/5.
These equations give

T geg B8 A
Asgz=028 B=Jl_165 (_uy R
50 {3) becomes i \\'x\
G28(7, +/urs) + 162( £, Fats) + 22 g
.

and thus Iardy’s formuly i established. ) N
Weddle’s formnls, may be deduced at \QBQE\’by adding the

zero quantity 5%/_\.‘3/; to the right-hand side'in Hardy’s formula,
N

LY ¢
W

+ AN
jo. *\i(,i - a’d)

. &N
Weddle’s formnls, may he 1\:{@}&11

B, l—FEooluale

-t Aap . . :7"; " .
f Fotli== '16(.}‘:& +5fa FFapaw+ 6/t g + g0+ 5fa g+ Fa e
@ '\

ju_\?ad-i—éz—fﬁfl;o 0000 + 5017452 + 1.014185 + 6. 1967 73

’ <" 1060660 + 5500181 4 1.154700)
>=0-5235990.

The f{!?‘;\;{’ﬁlﬂe of this integral i g7 or 0:5235987 correetly 1o seven

Placem

o Using Hardy's formula we have
N 'Q .
3

dx

) f 1
i\" o -8 = 134028 % 2:1547005) 4 (162 « 2:1085285)

+22 % 1.0337955)) = 0.5235985.

i d:r:_
/;Ha:z’

76. The Newton-Cotes Formulae of Integration.— Among
formulae of the type discussed in the last section, the oldest

Ee. 2 Foalugts

USIngG seven ardinates,
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wud best known are the Newilon-Coles formulae, which we
sball now derive from first principles.

Tet it be required to calculate the infegral of a given
function between limits x =4 and x=5. By the transformation

a—}-b b~
=gy
wi can reduce the integral to one in which the limits are —1
and +1. Let A, 24, . . ., A, be numbers intermediate between
-1 and +1; we shall try to find a sum of the type L\
o fltw) + Hifiby) 4. - . +H, k), ()
where Hy, Hy, . .., H, are constants, which will glosely
represent AN °
t‘_[ 1 M'\\.
f S)da. O @
1

“We are thus trying to represent the valne pﬁ‘hré integral by
« kind of weighted average, in which weight?x\fl‘o, Hy, ... H,
are attributed to the values of the ordin?a{pe:j" {z), corresponding
Lo the abscissae hg, 2y, . - o Aue Ir}jé’rder to secure that the
sutn (1) shall represent closely th&f;iritegral {2) we shall lay
down the condition that the sdm (1) is to Lo equal to the
integral (2) ewactly so long afW{w) is any polynomial of degree
iess than {n+1). N

Denoting the prodﬁ@\(x —hoY{m=hy) . . . (~h,) by Fl),
we see that the sum)(1) exactly represenl:s the integral (2)

when \ \ 4
¥z) |
z—h,

27 -
since t@iga'}\l;;:',t;ion is a polynomial of degrec #. The sum {1}
then redices to
{\ H, (= o) (e = ) -+« (o= D),
where the factor (%, %,) is omitted; and this may he written

B, 1t _"’2 ,or H,F'(,).

PN !
This gives at once

1 7 Fla)
H,= ]j_“(?h)f_ 1 ‘T'-_:_‘Iia_ ds, (3)

a formula which determines the H’s when the 7’s are ]{D:J.Wl'l.
(D311}

N
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This formula might have been derived by remavking thai
when () is & polynomial of degree less than {741}, il may be
vepresented acsurafely by Lagrange’s formula of tuterpolation
(§ 17), which may be written

)= F(’}J
) = ST )

The required formula is obtained from this at vues by

integration. N\
Let us suppose that the 4’s are chosen ut equ;‘..l:iiif,:erva.ls
apart 50 that A
2 4 g
?3'0 = — 1, ;I.-]_ =-1= E, 17!.-2 =-1+ _'}"3,’ . :’\/.zn’{fa“ «o 1L
Then LV

;}%Z—ilz(x—?ao) e @ h) @ - DN Ly

Sl ,*.:\J FELE
=(x+1).. .{m-l— 1- '?(—rﬁ—l)}\{x +1 - g(?‘n_rl_)} (w1

;4
2 T " N7
(E) PE-1) ... e+ 1) (b—r—1) ... (F-u)}

™
TR Y

where [ =in(x + 1) and N

F'() = (e = Ro) g - (= Ty y) (oo = Frosa) oo (B — i)
- ”\Z "
= _1\{%%\(5) P —) !

We have at{onee

>\ 4, ) 9
[ Ve = o~ 1) + L O W P )
A®
where :
W\ ( _ 1)-&;—':”2 T
N 3 IV W fie—-1) ... ft—»= L L (= m)eh
R T TCrr- ! I EPE (ET RS YRS R
D ‘
N/ T'has is known as the Newton-Cotes Jormula of integration™
More generally, writing 2, =a + o, we have

/: +wf($)dm =Ho/(a) + I Ao + )

+Hafla 1 20) ., 4 H, fla +mw),

* Newton, Letler to Leibnitz of date 24th October 1676; Principia, 8 (1687),

Peop. xI. Lemma 3; Cotes, Hormonin mensurarum {1722); James Qregory
(for % =2} in Ewereit. geom. (1668). Cf. Bickley, Meth, Guzatte, 23 (1930) 352,
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wlere

H,.— (r(}%)i;)ﬁf =1 o (f-r+ V3 {{~r=1) ... [f=m)dt.

The values of the coeflicients H, in a number of cases are given here
frar referenee

Tirees], w=1

Ho=H; |
Forw=2, w=14
My=1L={, ;=3 ¢
Fore =3 w=1 R\,
Y —H,—l, H—I,-: ')
- 1] 375 1 F A s N
Tog o= 4, w= _]1 '\}‘
Iy=Hy=4,, Hy=H,=;{ H,=7% "\
Torsn=20, w=1 ) ,\\’
fy=Hy,= % H;=H,=%% H,= TTs\i_l. we
1 =6, :I]:r

H0=H6=' i Hl“ 5_'55’ ]sz’\ﬁﬂ r-u:H:i_]u B

Note that we musi always have Hy 4+ H + Hz}‘- I P T

A fornmla making use of the ordinales a.ﬁ tHe middie of the intervals
tustead of the ends of the intervaly) wagh 33‘1\611 Ly Maclawin, Flurions,
2 21749 p. 832, R
.—ln expression for the lelllallldl.l“ a,ftel # terms o the Newlon-Uotes
fortnula has Leen given by J. T q‘rz,ﬁ?enqen Skandinantslh Akfuariatidshrift

(1921 p. 201 ‘\\

fi —Crleulols e\J
\\ fl e
Q .
I+
7 \./
by the Newton- f}'ote’s el with elyht nrdinales,
Tetw=1 aﬁbN]ﬁ-t m==8§, and write
x“\"
\J dty=tt—1) . . . {t—8)
The s c?;mmlcnta H, may he writlen

8- Y
‘\: u ;,LT__D_} ] r,b(r‘ nft
4 FUr 8 i t&), b

'

\nﬂ we have the values

H0=H = BN :1.{]=H = "_“5]14.'4,-', : ”‘Zz}lﬁu - 1-I{ fI'%'-

FEREL]
< SN 1T |
Hy=Hy =755 1 1=
. 1
Biuce firy = T e have
5 3 I
A 0 i— 1 ,i' i = 4 - !
Fl 1 & 1 i z o b S !
) W 3 i1 B i . .

1 =
141754 4945 2944 — 464 5248 — 2270 A248 — 461 2044 4045
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Then
T . 4 2 3
O-Id%ngo-l+H1-§+H2-5+Hs-%+II4-3+H5--1&:§+Ii6-%
§ i
+H?']_{_',-+HS'§
1 L 182 48 182 R
=m7—5{494-5xl-:)+1:;5-294-1—--35-46-'1-4-143-5248—-3-22;0}
= 069314721, ~

whereas the true value is 0-69314718,

77. The Trapezoidal and Parabolic Rules.—-’@”i;&";:?m@est
cases of the Newton-Cotes formula are the following.:
1% n=1 Oy

~+ e ":".
[ Ayt = gt + yuria &
a 7
This is known as the trapezoidal e, 1t is exact when
Jf(x) is a tunction whose first diffor *’L’l@-s are coostant. When

/) 1s a function whose first dif€3nices are not constunt, the
difference between the two sides” of the above equativn may

be written &N
L5 (@ + b10),
where 0 <8<1, N
] —. &
#ont e &

’ JW:z: = S/} + e + ) o uflu + 2u).

b )

This fo{ﬂ:}ﬁi& was first given (in a geometrical form) by
Cavalie{i;”} and later by James Gregory + and by Thomas
Simpsifn 1; it is generally known ag Simpson’s or the parabolic
e Tt is exact when J#) 18 & function whose third differences -

Jar6 constant; when #(x) i a function whose third differcnces
\\ are not constant, the crror involved in the use of Simpson’s
N, formula, 1.e, the difference betiween the first and second members,

may be expressed in the form §
~ g5/ (@ + 20u),
where (cf1.
¥ Contrrio d6 varid problemd, Bologna (1630), e 446,
t Eaeril, geowm., Londan (1668).
£ Math., Dissertations, Tondan (1743), p. 109,
§ Peano, Applicariond gesm. del ealeoly infin., Turin (1887), p. 208,
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| ) = gl te) + 3+ ) + 3o + ) +7la+ 3u))

This is generally called the three-eiyhihis r1ule.

11 practice, when it is required to compute an integral, we
first divide the range of integration into a number of intervals
and then apply one of the ahove rules to each of the intervals £\
aud add the results so obtained. Thus when we use qimpson.g
mile ulter dividing the range (say from e Lo @+ Z2pw) mtfo‘p

£

intervals, we have for the value of the integral « \J

Taof{u) +4wfle +w) = Jufle + 2u) ...f' 3
+ e + 2u) = Sl + Buw +duwflo + 4@0\
+ Lanf{e +4w) + saof{e + Buw) + Jula 64}

+. .. >
N

W

or

Lol flee) + 20 /e + 2) - floo + dae) +. L
+ 44 flo +w) —j@a SBuw) +. . .} Hf{e+ Zp)],

whenee the form in which Slmpgon% rule is nenerall} stated :

Fropin the sum of the extreymesordinates, fuice the sum of the

even ordingles, and founy times 1he sum of the odd vrdinates;

and multiply the resully &}om third of the tnterval of the abseisse.

. l—CalcuEaib \\

O f dz
.,'\} 51+

ft the Swz&qn formula, wsing nine ordinates.

Nt /‘

1 -
Lct»;hQ \ — " @=0, and =3 e Lave 1he values
" . 3 1 3 i i " x
a\ ,\, * 0 H s B E I “ : }
” o 1 8 o o 1 8 1
\/ Fa 1 5 ¥ .47 ¥ 1T ¥ 75 =
Then

o 1 ( 1 (4 2 4 (8 5 8 8)1
fn 1 4';,-=E{ \1+§>+2\5+§+-.)‘L4 gttt s))

=2—4{1 BE4+4-0761%0 5 - . 11070318 31

=0-683 154 5.
The value obtained is 0-693155, whereaz the correct value 3
log 2 == 0-633147, correctly to six places.
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L. 2.—8how that +f in evrlucting fhe wren between ordinates
=1 ond 2=2 of the rectangulor hyperbol wy =1 the Jormala of
Sianpson with 11 erdinates 4 eniployed, the evvor 4 0-00000 3,

78—Waoolhouse's Formulae.— A nutwher of fategroion formunlae
akin to those which have been cousidered tn the Lt thimee wrticles wera
given by Woolhouse in Jouwrm Tost. Aet. 27 11888y 1 122 e recon-
mended the {wo [ollowing specially for their bl
approximation.”

i . AHTH A3+ 5 E
[ -u_dt:"f22d 88745 1625 A }

w1 persistent

o et T o g e T K
N ¢
= [0-4485938](x, + o) T[0°2092449 70, + ) (NN
+[0-3304319T(uty + w1 1525358 T
{where the numbers in square brackets arve the log_gm}ﬁ U cocfiieients),
unid o \ e

$%4 ?

SR - —_ R k W - .
_ L . L, 188067 . A 18 . LT l__ |
L aheff = l-L-l E{_—)I\u-ﬂ 4 thyet + fi_()‘b% i flg g 4 égﬁl\fi? - tarl 133 H-HJ(

=[0-7011914](x, + Uyg) +[0-54 75500 ey + 10,,)
+ [0'79{219.% V(g + tgy) + [0 8670026,

79.—Chebyshef's F ormulae XN instead of laving down  the
condition in formula (1) of § 78 that Lhe intervals A 1= R Ay — By, ete,
are to be equal, we ley dowb® the condition that the eoctficients
Hy Hy, .. Hy ave to Levkqual to each other, we oltain a sot of
formulae first given by Cliebyshet,* which Lave found aveeptanes chielly
willt nuval architects, . They have a eertain advan tage whet the ordinates
are experimental dataNliable 4o nuknown errops ;- far i we have a
numhber of qmnti;it%\which are cqually liable o be affected with ervor,
and if a ll'n&x{gnﬁctiou of these quantities is formed, the sum of the
coefficients in ihis Tunotion being fixed, then the prohalle vrrov of the
funelion is teadt when the cocfllicients are all equal.

Chebyshéf’s gencral foomula iy that if Fl#) is a function whose
(n+ },ﬁu‘li&‘emncas are neglisibie, tlen

:~\l. N "
i T i P N e
.\'\\ f_l f.\..(?)(f.e‘}—ﬂ;{f{.bl} + el Bl +fiza)t,
L where By Ty oo Bpoare the Taots of 4 certain rolynomdal, which is, in

faet, the polynomial patt of the expansion of

_ % " 7
sty R B B

in descending powers of 2.
Thus, when fiw) is & fanction whose sixth diffevenees are negligible,

we have

[, oot o) i+ 0, + o,

* Juurn., de inoth, {2}, 19 (1874, P 18 dssoe. Frang, 2 {T.yon, 1873}, p. 69
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wheve oy, #y o v u ¥ AIE the roots of the equation

g5 T
#f— gt La=10,

gy LGl - = 832437 = %5
— 4, =0-374542 =m,,
dig = Q,

Chebyshefs formulae were suggested by a formula due 1o Bronwin*
uamely

! f(:c)dﬂsa}= fo " fieos )t &

i N

==l g 53_W . x‘,5_—,- T o B0 = 1) \:\.
'_'»n\f (coh. Qﬂ) +f (co 2?1) rf ku). zﬂ) ..+ f(wa o )\}', .

which is rigoronsly true when fiz) it a function whess 2nth diffutitices
cp - . - . T \ 4 s
are zero. Thus if f{z) i3 a function whose sixth differences arynesligible,
2L 7

we lave C x f S
il Tl i AR [hE J
[ S5y (- 59

80. Gauss’s Formula of Numerical In gation.—Suppose
now that instead of prescribing the nqmﬁe:rs fg, By, . . o By of
§ 76 by the condition that they are te’be at equal intervals
apart, we determine them by the cp@;aéitiou that the formula is to
have the highest possible degrqq{o’f ‘acenracy ; since there are ut
our disposal (2n + 2) constants Ay, b, . . . B Ho Hi, oo My
we can choose them so ag§ovnake the formula rigorously irue
when f{z) is any pr)];{lqﬁmial of degrce {2n+1). Denoting
the product (m—kgh@™ M) . . . (x-4,) as before by F{z), we
uust therefore hgv;ein particular

7 [ fore= [ sEia=o,

} . |

where 'qg‘(%‘ﬁenobes any polynomial of degree less than (n+ 1)
Noy.fft is & known property T of the Legendre polynomial
I?,,,\ﬁ..l\{x) that

.
[ @) Pato)o=0,

g
-1

so long as $(z) is any polynomial of degree less than (» + 1}
We see, therefore, that the stated conditions are satisfied
by taking

Flz) = Pyoaf2),

* PRl Mg 32 (1548), p. 262
+ Whittaker and Watson, Modern Anelysis, § 1514,
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so the numbers %, &y, . . ., &, are tlie roots of the Legendre
polynomial of degree (n+1).% The H’s are thew given by
formula (3} of § 76.

In the simplest cases we obtain the following wvalues for
the A’s and H’s:

n=l, fo= _% . 713 Ho—1, II,-1.
=3, het=hg? _? - ﬁ = ,3_22:’:;,_; :_(: .‘ {:;..}
Hy= Hy= 18;053(1’ :H} ﬂ 18 20{30.

Converting to decimals and transforming ?:ho variable so that
the range of integration is from 0 to { e have

T W

[ vierto= Aute « Aldafr s angim,
]

where 2, and A, are the tranﬂformed values of %, and H,
respectively, and in fact ~3%

m=1 )
=0 21«1{;_4 a7 Ag=A1=0.5
'&f86670 13

n=2 ,g x
\m;; 0-112701 67 Ag=Ap=
O m=05 Ay=3
NO x,--0-887298 33
Ov 2y =0-069431 84 Ag=Ay=0-173937 4
,&%' 21 = 0-330009 48 A=A, =0-3260726
R\ @2 = 0-669990 52
~O z3=0-930563 16
4 =4

%y = 0-046910 0 Ap=A,=0118463 4
T=0230765 34 A= A5--0-239514 3

B 05 Ay =0-984444 4
7= 0769234 66
= 0:953089 92

* Gangs, ¢ \ILLhodus novis integralium valores per aprox, inveniendi,” Mtk
Comm, I11, (1814)= Werke, 3, p. 163.
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o 1—TFind by Gauss's method, with a =4, the value of

* log (1 + :r)
. & Fa2
Writing
o log (g - logy (1 +2)
) = Trd = 2-3025845 09—1-4_?'"‘

W LY arrange

We lhus obtain

Finally we I

the working in the form
%.

.

1+« 104691008  1.230765 34
logg{1+2) ~ 0-019000 38  0-090175 28

0118463 4
1448 1-002200 56

0284444 4
1:053252 64

&N\

N/

7%
Togj, 2309585 09 036221569 036221569, 3

logy, 11%0“ +ah 8200057 73 8-05508740

logy, A 9:073584 20 937636

17-734857 62 18896271 74
Togyg (1 +57) 0-000954 84 \\

022532 56

logy A¥e) T 73300298 Do 5673739 18
Agty  0-005928 W0 0047177 90

the values *C .
Aglag) \N0005418 80

Aqiblg,) L 0047177 96

Ady .-,,1_-0 {02260 52
Aoy = 0085781 a6

\\ -& a,&u,q} = 0-041554 03

El-\‘c

‘lo\v}l e
£., l(i— 2 )d.b-—_—\nyfr vo) Al £
"\

4
w4

Q)

W lmrs\d:, the eorreet value of this integral

’\“

\d Fon 2 Khow thut o degres of aconracy equal to that of Guuss's

/7 iz obtained by th

=0-272198 0,

e use of

! T'\!. -d 1 }\ Il}
f_l ] -.bs;l'{ﬂ + 1} ‘l |15 'J:-'} z

14

 t Ajilr'rx(.'a.'n)

the sum being exfended over wil the roots b of the equaiion

that 18, over + 1,

Patar(s) - Pa-r{x)=0,
—1, und the rovts of B./ix)=0.

(=ZT log 2) is 0272198 3.

Sfornrule

(Radau.}

~& 3
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MISCELLANKOTS EXAMPLES ON CHATTER VII

L. Bhow that if fifth differences are negligihle

it +tn
[ Feln=0-28( fu 4 2ot Uasrat. . . Sy 00

do

T 162 for 1+ nk . JHOBEL g f cade

{I‘Shu\'t_\.lt-ox\L
2. Bhow that if 6fili differences are negligihle: ) ’\i.\,‘
i 5 ) "\ ot
[ Sl = Tl fe Flopetfo et .. S onet \.}

- 5(‘,1‘;-{_.{_1 +f,5+3 +. .. +f(r.+6n S+ (f{h-_g +fu _}_5”{\~~_‘, L _._(;.n._\s}]-
&(/ Shovelton.)

~
3. Show thut the integral \\\'
N
Py

1
[ a3 -1« e
- &)

Hblhg) £ B5fl) +. . .

o . .
exactly 2o long as ) is s pobynomial of degree less than 2w, provided
the abscissae By By L a,xé;‘ihe roots of the cquation Tix) =0, where
I{#) is defined by the rej{tiou

iy be represented by the sam

AN an o in
&~ f’\’:\‘*ﬂhﬁ{rff) = ol = TN T )
and the Il%s aredefitied Ly
N/

5

¢ 10 Flf
A\ i AL J e,
x:\iws LM 1 T
{o}’w (Radaw.)
N i&‘he values of 2 function Jiz) are given by the table
R x Jiz).
<>’w./ T-050 1-25386
T530 1-26996
1-070 128619
1:J80 130254
1-080 131803
1-10G 1-33565.

Using the Gregory formula, calenlate

1T
Fia)da,

.)J'.‘U-'JU



NUMERLCAT, INTEGRATION AND SUMMATION 163

5. The values of & function fl are given by the lable

41 ahh 254 161
42 406 586 896
43 418 161 601
44 129 981 694
[i%5] 1-12 0560 625
16 454 371 826
AT 466 9458 881,
§ i 47 PN
Evualuaie ; Flael. \
Jal ¢ “\.
6. 1f f{#) 3s a funetion whose fornth difterences are negligille, pu)u:\\ g
bt
= 3+.2 g_f2 N
‘L £ "’J"{:»:.)ri’u;:....__4 T -+ i fz+ N/2),,\'.\:..
XN
and, wore generally, if fla) is & function whoge Zathlslifferences ave
m'crhcrlble, obtain a formula )
.\\,,

[eepents= Amf(.:.k},..:\*

) fi”
whtere g, g, + » o o are the rools of the ]aul.\nmm nl &* Sl

LY
AP (A Derger)

N

7. If fio) is a funetion whosc sﬁgﬁx differences are negligille, prove

thal
[ e -—{g\‘ f( NEESCEN an

funetion whose 2ath dillerenves  are

T h’.\

-—1

anidl o generally; € 'Jf\f\r is a
negligible, obtainig {r};muh

.\’?} I o 2dde = X Apfie),
S =l

\\
where Ty are the roots of the polynomial
\
p \ w4 (A. Durger}
\ /8. Show that Hardy’s formula {p- 151) may be derived from Gauss's
general formulu by taking the nearest integral values for the ordinates.
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CIHAPTER VIII O
7N\ *
NORMAL FREQUENOY JJISTRIBUI‘IO.\:&" Dy

81. Frequency Distributions.—In statislidil 1nvestigations
atfention is directed to a group of persdlls’ or ohjects, and an
enurneration is made of the individudls in the group who
have some partivular attribuge Ao nstance, we mny con-
sider the group consisting of alhthd inhabitants of ledinburgh
and enumerate those who are widoWwers, In the most inportant
and interesting cases the aftribute is one which is capable of
being expressed by a numt{érg thus the attribute might be the
height of the individuddwhich is expressible as a pumber of
inches. Tn such ¢dfes the whole gronp may be partitioned
into classes or isu\)-groups according to the valne of this
number: thus'the whole group of the inhabitants of lidinburgh
may be ar;ga,r%ged in elasses according to the number of inches
in their: 8bafure ; one class, for example, might congist of persons
whosgheight is between 68} inches and 691 inches. Now leb
pbe $he number of inches in fhe height of the shortest person
iiMhe city, and Iot the number of 'persons whose height is

\Petween 2; - 1 and Z14-% inches be yy; et #;+1 be denoted
N by 23, and let the number of persons whose height is between

Te—Fand 23+ 1 be 4y ; lot %2+ 1 be denoted by g3, and let the
number of persons whose height is hetween 2y ~% and @3- be
denoted by y, and so on, Then we may regard @y, s, @3, . - -
a3 successive values of an argument and gy, yo, 45, . . . as the
corresponding valnes of a function of this argument. The
table of valnes thus obtained specifies the distribution of the
beights among the inhabitants of ¥dinburgh : snch a distribu-
tion is called & frequency distribuiion,
164
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As un example of a frequency distribution, we may take the follow-
ing resuits of measurements of the chests of 5732 soldiers in Scottish
reciments. ¥
b measire tn taches 33 34 35 36 37 38 39 40
ber of men . . 3 19 81 189 400 753 1062 1082
it measure tn dnches 41 42 43 44 45 46 47T 48
Numiber of men . . 935 646 313 168 50 18 3 1

The type of frequency distribution which is most familiar {0
to the worker in experimental science is the digtribution ,\of\
the measures oblained by repeated measurements of thessame
ohserved quantity. Let the true measure of an”qbs?érved
quantity be a. Since measurements made of thig’ quantity
Ly the same or different observers are aﬂ’ectgdﬁb'}' errors of
chservation, the measures actually obtained il not all be
aqual to @, but will form a group of measysgstyy, ¢z, (3, Ga - -
not differing greatly from a.  The pracgifalproblem is to obtain
the best possible estimate for « whehwe know the measures
ity @, Og, . . . 0d also to estigite the error to which this
value is liable. In order to ghlve these problems, we niust
study the type of frequeugy:',ﬁist-ribut:ion to which the group
(g, g, @5, . - - belongs. o\

82. Continuous Ereguency Distributions.—In the above
numerical exampléxive have grouped together in a gingle class
all the 753 men, whose chest measure is between 37} and
384 iuch::s.~.’éuﬁposing that full information regarding the
individualwieasures is at onr disposal, we might have divided
this claéXhto two classes, one consisting of men whose chest
mearj&'l}e “is between 874 and 38 inches, and the other whoee
pQééﬁ measure is between 38 and 38) inches; and in this way

“\we might subdivide cach of the original clagsaus, there:-by

N\ evidently doubling the total number of classes and so producing
a more detailed statement regarding the chest measures of the
men.  Further, we might divide each of the new clagses into
two, thus quadrupling the orjginal mumber of clnsscs‘;‘ ]?ut
evidently if we attempt to proceed very far in this d1rc(l-.t?0n
we shall meet with practical diffienlties : thus ne stat.istwlun.
wonld think of trying to arrange the men in classes each of

* Eginburgh Medioal Jowrnal, 13 (1817} |- 260,
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which comprehends a variation of only one-thousandsh of ap
inch in height, partly hecause the measures caniat he relied
on to such great accuracy, and partly because the unimbers of
men in the classes would become small and irregular, and
would cease to present to the mind a clear pictnze of the
frequency distribution,

For theoretical purposes, howover, we may disrogad these
practical difficulties and consider an ideal case in whidh the
measures are supposed perfectly accurate, and {lw myniber of
individnals ie the whole group is supposed very Jm\:?é,\so that,
however narrow we make the qualification for et ership of
8 class, there will always be encugh mcmbei-;’i'u it & make
the sequence of the numbers of members{df classes » vegular
sequence. Now cunsider the class coustibuted of iniividuals
whose measure is between z and %te, where ¢ v a mmall
number. The number of membga;?{in this class will «vidently
be approximately proportionalafe e, since doubling e range
of qualification for the class would approximately double the
membership; and it will &lso be proportional to the number
N of individuals in the"éﬂmle group, since, il twice ¢ many
soldiers were measure®, the number of soldiers in each class
would be approximately doubled, Let us then denote the
number of individnals whose measuve is between z and 2 + ¢ by
Ney; then ‘t}}e numbar y depends on @, and in fact the way
in whichyy/depends on & specifies completely the frequency
distribu:t}on. We shall often express the dependence of ¥ on ®
lJy:JQ"l‘i ing ¢(x) for ¥, and we shall use the differential notation,
Mxiting dg for ¢, 5o that in a group of N individuals the namber

\Whose measure is between z and 2 +da is denoted by N ¢fz)da.

Expressing the same ides in other words, we may say bhat
${x)dx ropresents the probability that an individual chosen ab
random in the whole group has a measurc between z and
@ +dz; and hence il the Jrequeney curve 3= $(x) be drawn,
the measure of any individual is equally {ikely to be the
abscissa of any point taken at random within the ares bounded
by the curve ¥ = ¢(x) and the axis of 2.

The carliest. mathematical diseussion of a frequenvy disiribution seems
to have been that of Blmpson (1756) in connection with the Theory af
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rvors of Obzervabion. Binipson assumed that the probability ofa positive
ror lying between o and w+de was Piz)de, where o) = ~mzx+e,
nd £ heing posilive constands: the prohability of & megative error
wwnmed egual to the probability of a positive errer of the same
aourd, and errors of greater magnitude than ¢fm were astwed 1o be
ble,  The frequency curve {or the errors is therefore, in this case,
tez of an isoseeles iriangle, together with the prolongaliens of the
: oulside the triangle.

43. Basis of the Theory of Frequency Distributions.—
7 shall now approach the discussion of frequency curves from
1o theoretical side.  The considerations on which the theoretical
\weskigation 1s based wore first put forward by Laplace, and
5y be deseribed as follows.

Consider the requency distribution of (say) the ches§~.}

\eastres of the soldiers (§ 81). If we fix our attention ongn
wdividual scldier, we may say that a great many diﬁ“e?ent
wtors have confributed to make his chest measure Qwhat it
shually is.  For, owing to heredity, it will have bq&n\l\rﬂuenced
y the chest measures of hig futher and mothcxy;‘xbﬁt the chest
sasure of his father will in turn have beg‘gu'inﬁuenced by
ose of his father and mother, and so .()Fl;",,BD that ultimately
he chest measuze of the individual splﬁim’ we are considering
1y be regarded as influenced by Lhé:bh pst measures of a very
wrge nanber of individuals of&\rcmote genemtion, gach of
hem singly making only a vety ymall contribution to the total
(feet, Moreover, other fabfors will enter: for exatnple, his
ourishment and exercifeyat different ages of life. Thus the
viation of the ﬁwt-ia’(rﬁ\:}’iest measure of on inelinidual from the
werags gy be raqi:?sﬁgd s the swm. of @ very great pumber of
ey smvedl dev*&;@-imaﬁs (positive or negative) die {u. .ffm SF’-};I(H'H{(!
iretors in theheredity and eneironamend of the aneliniduad.  These
nultitudinbus small component deviations will be assumed to
Y ,ep;eﬂ-:'imzt af cach other, n the sense in which the word
‘indepéndent 7 is nsed in the Theory of Probability.

84. Galton’s Quincunx.—An intercsting piece of appam?ns
vas devised by Galton* to illustrate the formation of a
requency distribution from the joint effeet of a large numler

f gmall and independent deviations. .
* Nutural Inheritance, p, 655 for wxperimental resulls of, 0. Cruber, Zeils.

ir Math. w. Fhys. 56 (1808), D 324,
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Into a board inelined to the horizontal aboil o thousand
pins are driven, disposed in the fashion known to i STOWers
as the quincun, 1.6 so that every pin forms equilitbesal triangles
with its nearest neighbonrs. At the top of the board is a
funnel, into which small shot is poured. The shot i1y descend-
ing strikes the pins in the suecessive rows, eacl jvsce being
deviated to right or to lefl at every cncounter with o nin. A
the bobom of the board are about thirty cormpartm-niglhto
which the shot ultimately falls. It is found thaf bheaniddle
compartment receives most shot, and that the fallip=oel#n the
amount of shot reccived Ly the con'lpartment-sz,;‘?,a:‘:w;:_e proceed
outwards from the middle compartment, resem}ﬂ(;.‘é ciosely the
falling off in the number of men having gu.}iq‘;‘:spond:su_g devia-
tions from the average chest measures {§ 81}, or the falling off
in the number of measurerents which have corresponding devia-
tions from the average of the meagutey of an observed guantity.
In fact, the curve formed by théwdwtline of the heap of shot 1s
2 frequency curve of a commealy occurring type.

85. The Probability ef % Linear Function of Devia-
tions.*—We shall now proceed to the analytical discasaion of
frequency distributigns.’ “We start from the fact that a weasured
quautify, such asm?he chest measure of a soldier, is liable to
vary from ond individoal to another, or, in other words, o
oxhibit & dewdfion from its average valne; and we ghall cappose
that this, déyiation is the total effect of a vash number of yery
small }i{v“iati_ons, due fo eanses which operate independently of
caghyofher: denoting the small deviations by €, € - - ., €, 7€
shall suppose that the total deviation is their suin, or, Wore gener-

wlly, is a lincar function of them, 8AY, Ag FAg F. . . F MEn

~\J We want to find the probability that in the case of a given

N/ individnal soldier this total deviation shall have a value
betwaen (say) , and w,, where ) and w, are given numbers.

Tu the present section we shall not require o make use of

the assuraptions that the deviations € €9 + - - €y BTE VEIY
small or very numerons,

t/
Lot [ gu(2)de bo the probability that the rth deviation e, has

* Laplace, Théorie anal, des #rob., Yvre I, chap. iv.; Polsson, Chnsaissmnee
des temps (1827), p. 274,
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a vulue between o and b, so that ¢.(z)de is the probability that
it hus a value between wand @ + . Now the probability of the
conzurrence of any number of independent events is the product
of the probabilitiss of the events happening separately; and
henze the probability that the first constituent deviation has a
value botween e, and ¢ - de;, while the second has a value
between €, and e, + de,, and so on, 1s

q’}l(el)%{eg) . cpﬂ(e,,_)(felffea ... deg, (1)

and the probabilify that he + . . . 4 A€, has a value hetween{ ),

w, and w, is therefore the integral of the expression (1), taken

over the field of integration for which A + Ay +. . ,.—F}‘)L:;En

lics Lebween w, and 2, “s ’
Now by Fourier's Integral Theorem * the expregsl;ﬁ'

1™ ™ sarr-ay
gt T A N
271’]-m f-wl ¢ df U '::\\“

has the value unity when # lies between @:i}&ﬁﬁ 11, and has the
value zero when o does not le betwéeh' these numbers. 8o
instead of integrating the expressiont(1] over the field for whiclt
T N N Swe can first multiply the
expression (1) by N\

1/ f‘t"ga{(}—a]el-w‘;—. =N ap

2] w D
and then integrate p‘(%s besulting expression over the fitld of all
valuesof e, €, E,;T The probability that \ye; + Agep +. o + Anfu
has a valie buti'.j\eé:n e, and or, is therefore

1 ] Wt “\Qx;\ ot 5 R )
_2-. f f .w: ~[ o f 618(7—.\151—.\359- - -—Amu)q,)l(el}(‘bz(ez) L
TS _ e ANI— S - —
R\ o bulen)deyde, . . . deydrdd.

. ?"fh'c theorem in question i3 that nnder certuin conditions {for which ef.
Q\?hif’ta.ker and Watson, Modern dnnlysis, § 877}, the intagral

1" s
;l dﬁ[ coa{8(x— i firidr
‘o T
1 o i e
or b f g f AN e
—— 'S

lias the value fix) when z lies between and wy, and has the value zere when
z does not lic hetween these numbers.

+ This device is duc to Cauchy, Comples Fewedres, 137 (1833}, ppe 108, 261,
3234,

N
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Writing (2,{8) for| ¢ ¢ (x)ds, the required prohability is
g 1 2 ¥

therefore o
W fit
‘)i f j 0O - . . QA
S - d g

or, performing the integration with respect to ¢, the probability
that ke, + A6, +. . .+ Aye, lies between «—¢ and w--¢ 13

1= 4 ._“_ #
oI S i,

ki

N
Oy
where ©(6) s written for Q{00000 . . . @A) and
therefore the probability that Ae, +. . .+ )Lnen:ii};s belween
and x + dz is ¢{x)ds, where D’

1" 8 "‘:\i"
blir) =557 f 0Q(8) %) (2)
From the last eqnation we h&‘fg}\ by Fourier’s lntegral
Theorem, ,\
26} = J ;:g;“al‘r}‘)(:r:)dm, (3)
o3

50 Q(x) hears to 4(x) the &iﬁie relation that Q,(z) bears to ¢.(#).

It appears, t.hm’cforq, that when devialions are added to form an
aggregale deviation, the, Sorresponding fanetions {,0A,0) are maultiphed
together to form ﬂ]@"hmm-i(m 29y, The nnderlying reason for this is
that when thef Qs"'m-e multiplied together, the arguments of the
exponentials afl }:gether in precisely ihe same way as the devistions.

700 ® o
NO“":V’@‘I‘EB 8 for{ P f)de, so that s, Is (In the language

)
of theyTheory of Probability) the aspectation of the kth power
& rth deviation. Then by the definition of ©,.(f) we have
AN : S/
\"\, Q) =1~ ips, — %52 +ErSat gt
Now let the logarithm of the series on the right, whep
expanded in ascending powers of ¢, be denoted by

. &2 243 =
log 0.(6) = — iy~ py t s gy = (8
8o that :
J(nl = 813 }32 = = 51 1 j?3 = .-‘51 1 0
|32 8 ! g, 8 1
5 8 23
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The quantily g is called * the seadavscrinnt of order o By
{4} the fundamental formula

2(6) = (00208 . . - M),
or  log 2(8) =log 0,{A,6) + log D,{x,&) + . . . +log L,[(4.98),
way now be expressed by the simple statement that the Lth
seminvariant of & swm of deviations €, +e+. . .+ e 13 the sum
of the kil seminvarionts of the individuel deviations, with the
furcher yemark that the kth seminvariant of he is A¥ times Lhe
sominvariang of e O

86. Approximation to the Frequency Function.—We shall)
now derive from the result of the last section a fornmla'.‘;pt'
oreal practical importance by introducing the asspfuplions
(which have not as yet Lecn used} that the consuituﬁr:}t devia-
tions €, €5 . + -, €q BLE VEIY DUILETOUS and are indigaduoally very
small. It is casily scen that by shifting the/zero-point Irom
which the deviation e, is weasured we can gogure the vanishing
of its first seminvariant: we shall sqpﬁos'e this effected for
each of the constituent deviations el,‘g’g}l. . €ne

Tet 0, Py, Paps Puyy - - » D The sdminvariants for the devia-
tion e, let 0, Py Pay Pao » - «Je the seminvariants for the
deviation ¢, and so on; thédy as we have seen, the scmin-
variants of the aggregate (8viation ¢ are Py, Iy, - where

T, =0,
s % WP+ XNPan T A ¥ - -
By =20 + AP Adpgt+. - -

We shallstppose that P, is finite; and we shall Turther
suppose fhabthe constituent devistions are very nuinerous and
are appréximately of the same order of magnitude {or at any
rabe fhat o very large number of them are of the same order of
n}s‘g}litude and the rest are smaller than these), so the condition
that P, is finite implics that pach of the quantities A%, is a
finite quantity multiplied by 1/n, and thirefore A fper is of
the order of m»-% This being so, A3, will be of the arder of
Papartah and P, will he of the order of J??:;,ji}-_)_,-_'?h‘-}, and 8o
will—at any rate in a large class of cuses—Dbe small compared

* Thisle, Almindebiy Jegtéayelsesheere, Copenliagen, 1897 : Fhenr wf trlescrrees
tivns, Tondon (C. & E. Tayton} 1903,
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with I’,, on aceount of the Lclor m-i  Similurly, P will Le
small compared with Ty, and so on. Thus for o :Lg‘gl‘egabé
deviation we have

02, il
].Of.; Q(O) = 2_, ].21— 51 l ;1':![)4_
where P,, Py, P, . . . are a rapidly decrcasing soyucnee of

quantifies, and indeed in a large class of cases ', V.. . v AYE
negligible compared with P, Tle probability Eh AW heN\dggre-

gate devialion lies between @ and #+ds is there »&,(\ lo)d

where, by equation (2) of the last section, O

LI ﬁ— \
sy L[ ot S5
2wl _ ..‘\"
Writing \%
"‘E Pﬁ?. Pt . A
¢ ' —1+A(a6’) T\B{a@) + ClEES . .,
where A, B3, . . . arcina largs cla,ss of cases negligible compared
with P, {as follows from whip¥has been said above), we have

25}

1 ° : k) i3 0:‘.:; . . . -
bl) =g - f o TNl + A(0) + B(L6)E + CEg) +. . Jdb.

—

A o0 2 i ol
Now ) i"’y ¢ iPR ]G = (_I’ ) e 2Fj,
¥ g g

A T

L o
and therefql:e\

‘i’(""’): LA <r) +B(§i)4 0({5‘95* }(2 %)‘*P (4)

\In th large class of casges to which we have referred, when
SO D, 6 L. are negligible, this hecomes
\. 1 a2

\»\} - pl) = (2P, };3 i (B)

The formuls (B) is due to Laplace, and the more general
form (A) to various later writers® These formulac ﬁpemf}
the naturc of a frequency disiribution in which the deviationg

¥ The first of the additional terms was fouud by Polsson, and the rest by
T P CGram, Om Boekiendviklinger (1879); Thiele, Forelueshinger over
Almindeliy Ingtiogelsestnere {18897 ; Elementoer FugtiegelsesTaere (13970 1 I‘due

worth, Phil. Mag. 41 (1886), 1. 90, Bruns, Ast. Neck. 148 (1897) col. 320
Charlier, Avkiv for Math. 2 (1905), No. 20.
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from the average measure are due to the joint effect of o very
jarge number of independent causes, each of which singly has
only a very slight influence; the deviation of an individnal’s
chest measure {rom the average, for instance, being thought of
ag aflected by inleritance from a very large number of remote
ancesbors,

37. Normal Frequency Distributions and Skew
¥requency Distributions.— Formala (B) of the last scction
shows that, ab any rate in a large class of cases, when o deyitty,
tion € 15 constituted by the summation of @ very large numbesof

independont devintions €, € « - o the probability ;&;{c‘t\é lies

betrvcen & and &+ dx 18 , \ :
PN\

swhere P, s independent of @ This is cal{%ﬁl\)he normal law of

deviuiton. \ QO

Now consider a [requency digthibution consisting of N
individnals {where N is & very la@r’gé number}, and suppose that
the number of these indivi@us;l's’ whose measure 18 befween z
and @+ dz is denoted by Nep{)dz, so that ¢fz) is the prob-
ability that an individmu@ taken at random iu the whole group
has & measure betweeh @ and @+ dn Let @ denote the average
value of « for allsthévindividuals of the group, 0 that (» -} is
the deviation of ¥he measure of an individual from the average.
Then on thé ;msumption that the deviation is duc to the
operationdf a very large number of independent causes, encl
of wlsri}j\r makes only a very small contribution to the total
devidtion, we have seen that the probability of a total devia-

L Hion between 2—a and z-a+d» is (at any rate in a large

¢
N\ plass of cases)
r'_'-'.:r‘r)2

1
(27‘_1)2);_,"“3 _ (h,,

where P, is independent of = Frequency distributions to
which this applics are called mormal freguency distributions.
Other distribntions, for which the law (1) must be replaced by
the morce general law (A), are generally called skew frequency
distributions.
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As the subject of the present chapter is normal «iistributions,
we shall say nothing more about skew distribulions except
that formula (A) leads to an expression for a skew Ireguency
funetion as a scries of the funetions which are called perrabolica
cylinder funstions ® or Hermite's junelions. In wmost cases two
or three terms of the series are aderquate to reprosent the
function with suflicient accuracy.

~

As an illustration of the way n whicl o great number «f Nx [eney
diztributions in nature conform to the normal law, we givy { By ol lowing
data relating to 1000 observilions made at Cresmwichy\CEed b Tight
Ascension of Polaris,  Let @ denote the deviation of, omé &b measure
from a value nesr the mean of all the measurcs, gtpi
seconds of time; let y dencte 1he number of 1deas Tes
amount of the deviation s o) let o denote a.galife caley
theoretical equation of a normal [requeney Wighabution,

/. 1000 R
&

m

acerl ne nsnal i
:h the
Aoatom the

where ¢ = — 0-08 and A =0-§, “.[‘11(';1:1}\»'3 have the following nenlls :

& ' i

-35 0 AN 2 4

530 &y 12 10

— 28" 25 az

— 2.0 43 16

=175 74 82
SN0 126 121
\\’iouﬁ 150 152

p 0 168 163
\", 05 148 147
J 1-0 129 112
15 78 72

20 33 40

25 10 19

30 2 10

Tle agreement of y and y' is, generally speaking, good.

B —r measurements are made of @ cortadn guanitly, euch mensure
being Hable o an error which moy have any value between ¢ wnd — ¢, all
such volues being equally Wkely, The swm af the v mensures is denoted by s,
Shiiwe theet when e Londs to sern and v inerewses inelefindtely dn such o way
that e fr tends o o Jintle value k) fhen the profbubiiify that s (e belwesn ©

und @+ da tends to
1 Bt
3NEdyr "o
N +
Pind A

* For an aceount of these funstions ef, Wlhittaker and Watson, Modera
Analysis, § 167,
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38. The Reproductive Property of the Normal Law
of Frequency.—Consider a {requency distribution which is
normal, so that if ¢ denotes the deviation of an individunal
measure from the average, then the probability that ¢ has a
value between 2 and iz + dp is (writing A2 for %)

2

Fr
e Jodz2 d&/’
N

The constant % was called by Gauss the medulus of precisiona .
The function ©(8) is, by equation (3) of § 85, N

N
2(6) =f e~ ey <~.’}‘.
A M'\'\.’
- g—aﬁ.l.-hix?d&? N\
=l 3
& \,
=g "2 AN
1 ,\ -
80 log Q{8) = ~ @;'2?2 v/

The only seminvariant is theygﬂire" of order two and has the
%‘2. From the ad@iti\?é property of seminvariants it
follows that 2 deviatior.}..,v:&ﬁch is formed by the summation of
any number of pa iéJ‘“ﬁeviabim& each of which obeys the
normal law, has all, its seminvariants zero except the second;
and therefore iy aggregate deviation ifself obeys the normal
Jaw. This §s\?;he reproductive property or growp property of the
normal Jasw'ef frequency; an wyyiegate deviation, formed by
the sthMﬁﬁo;a of any mumber of deviations which obry the
noryded Liw, itself obeys the normal luw.
2\ 89, The Modulus of Precision of a Compound Devia-
jon.—Let o deviation e be given as a linear combination
A+ Aggy e ok Raga of a number of deviations ¢, €, . . ., €,
each of which cbeys the normal law, so that the probability
that ¢, lies between @ and =+ dv is

value

} br g
T
whore 4, is the modulus of precision for e,
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Then by the last section, the seminvariant for e, 13 9;3)'—2, and
2y
therefore the seminvariant for Aje . . .+ A.e,, which is also
of order two, is
i 0D
2 !LfT fig? Tt
Kow, as we have seen, e also obeys the normal law of

frequency ; let the modulus of precision for ¢ be I, SQ,\bhe
probability that e lies between » and &+ do is \

KoY
E{’-'—Hs‘ﬂ{&g : ~ \...
N . \J
then the seminvariant for ¢ is zitz Equating €hi} to the value
obtained above, we have N
1 A2 Al )]

e s i P

This impertant formula givesd t]}c modulus of precision of a
compound deviation in terms §the moduli of precision of its
constituent deviations, wh@u'bhesa are of the normal fiype.

90. The Frequency (Distribution of Tosses of 2 Coin—
The earliest cxample Of '% normal distribution of fregnency was
discovered by De Mﬁowre in 1756 * in considering fhe {oilowing
problem: A cpte)is fossed N times, where N is o vey large

number (Whic I’or convenience we suppose even and equal

to 2m): dovind the probability of exastly (AN —p) heads and

(IN +1n) }ad» The probability of exactly » heads and # tails
21!

lxl\y an elementary formula of probability, 2];n- Tt Re-

™ plamng the factorials by Stirling’s approximate value (§ 70),

2N o
namely, ¢!=e¢ % F(27)}, this becomes (rn)~* or (#T\T)' The

probability of exactly (n—p) heads and (n+p) tails is
! .
212-;1 W; denoting the ratio of this to the former
probability by E, we have therefore
i minlo
(=) ()0
* Doctrine of Chanees, %vd ed. (1756), p, 243,
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=T

g0 log E=21log n!~log (n—~ p)!-log (n +p}L
Teplacing the factorials by Stirling’s approximation, we have

log E={2n+1)logn— (n~p+ 3} log (= -}
— (4 p+1) log (n+ )

- _ { (;aa -p+ %) log (1 - ‘D + (.n TPy }) log (1 _.r_l?’_;I] }

RIS o D N URTS) CAT AP

2 ¢\
& “

S AT O
L < W
sz N

= -\-r . . - ,\.\'"

Combining these results, we see that the pr 017}(62)5[’5»’-‘] of eonctly

\\.z et
(1N = p) heads and (3N +p) leils is rrpp\oumrf!f’lq ( ) =
whence the probability thet the msmbr’; of]wrff?s will Be befeeen

AN +ayN and N+ (z+dw) ,J.N s apyproadmctely ( ) e~ .
This is evidently a case of a.ngrmal frequency distribution.

Kz, 1—Show that the ,gﬁi&&ahﬂﬁy thet the number of hends will be

¢\.7
N\

1
4 7

between (N +-}J\T mzrl IN -1 /N s --xrf‘,'s‘y""ci-y or (-GRET,
LU

N \ J
Eit. Su—dnbaih 45 tussed 1000 times. Show that an absolute majority
of the 3100 Glosile seqnences gives the differoice Detwrgen the number of
heads w}{\?mmbm nf tudls less than lweny-two.

91 An Illustration of the Non- Universality of the
“Notmal Law.—The following example® shows that a great
\number of causes, each producing a very small deviation, do
not always by their collective operation give rise toa frequency

distribution of the normal type.
Suppose the Jaw of frequency for each of the small con-

stituent deviations e, €, € - » - 18 {#)=1e7" 50
¢{o = Yo~ when & Is positive,

* Hansdoull, Leip:iy Fer. 53 (1901}, v 152,
{p3il) 7
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and H{z} = Le* when & 1s negalive,

In this case we have (§ 85) for cach of the constituent
deviations

A0 =} o

2,(0) = j em W (Yl =1 ’ gmHemla . ] I g,

—w N R

1
-y
Let the compound devisbion be defined to be e, wiinh, >
27 1 1 (\)
E=?—r(€1+;§;E2+ Fegt. . ) \3\

Then (§ 85} the probability that ¢ has a va}ue between o and
%+ dz is ${w)dr, where A0 LV

\

pl) 2 j‘mS?x (’“”dﬁ

and Q(p ()sz(“g>( )

‘1:; 1 1
==\ Bt 982’ ofgE oo
. ‘1&“}‘ _‘47_2‘ 1 q- 32—:’_2 -+ 52_‘7‘_2
QN
ON 1
\\ ) cosh &
o :,‘ _1 alfxgf g
Thorotofé; [ i

. eéﬂx
\ji‘fus integral may readily le evalnated by integrating o
m the plane of the complex variable 6 round a rectangle of
helrrht = and indefinitely great breadth, one of whose sides i

the real axis of . The rogult is

1

gty g

hli) =
Thus tAe probability thut the devialion ¢ has a velue between &
and o+ dy is EHT]_E:_%”&B' This is clearly diflerent from tbe
normal law,
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Theory asserts, and observarion confiems the assertion, thar the
novmal law is lo be cxpected in 2 very great mumler of Jrequency
distributions, but not in all. This state of lings e in te pust
io much eombusion of thonght reguoding  the validity of {he nonal
law, which was widily referred 1o fn Lippman’s renark to Poinead ¥
“Rverybody lelieves in ihe exponeniind law of eros: the experd-
menters, beeause they think it ean be provel by mathematics; uand
the mathematielans, beeause they belleve it has been estallished Ly
obzrvation.”

92, The Error Function.—Having now established the)
theory of normal frequency distributions on a theoretical H&%is,
we proceed to invesfigate the properties ol thesc disgﬁ‘rfkpions.
Denoting the modulus of precision by 4, the pruba%lity that 4
deviation lies between 2 and — 2 is

2 noae { \\"
- o= 1%yl or @ (R, &
ek O or T
where i) _2f R,
S v R

N
»

On account of its ilnpnrtun’f:c’in the Theory of Errors of
Observation, ®{-) is ealled the Frror Funclion.
1f the probubility I{ﬁuﬁ a deviation lies hetween » and - o is
given, ®{hx) iy lc;w}xh and therefore Ax is deturminate: so
the deviation,_ayutrespouding to this probability decreases
as % increas s;;\fhat is to say, in the case when tle devia-
tions are:'ﬂie errors occurring in a seb of measurements of
a quaptl ¥, the precision of the measurements increases oy
7 :in'cr}eases. This is the reason why % is called the modutvs of
,R{ie."g\}iﬁo-?a.
\J We must now see how the function &(») can be computed.f
1% First we have
#E b
e=1-a%+,~ gt o

S

* VPoincaré, Cwlend des prod. p. 140 »
4 For the analvtical relatiens of the Errar Function, ef. Whittaker aud

Watsen, Modern Analysis, §16.2.



180 THE CALCULUS OF OBSERVATIONSZ
and, intograting this,

20 4B a8 a7 1
Pl) = YR TIE e AR
This series converges for all values of 2

For example, when w=0-5, we have

I R ) x®
I IR T TY AT St O
L )
T2 247320 3376 11069277 N
« \/
=0-50000 — 0-04167 a ¥
0-00313  0-00019 O
0-00001 (Vv
—0-46128, \\i\
5O Dla) =0-46128 x 1; u‘sﬁ
= 52080,
. % V,
20, Next, write QO
— "
XS
)

s

Differentiating, we haife -

i

a
*\"\” ale N =

) iy
0 A A Y
g P, el Zey=1
.,QJ
Ng{gﬁiy evidently begins with a term z So substitute
YN e b 4o’ +. . | in the last equation and equate co-

efﬁ ients of powers of x; therefore we obtain 8¢ -2=0,

\ ~2a=0,Te- 3510, cto., and therefore
Q/ 9, 2 98
= ot 4 TE
YmE g A g g
Thercfore
A e . 1
B ()= J el 4 (272) 9_5(2&2)%3‘5‘%(252)3% . }

This series converges for all values of #,
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For example, when @=0-5, we have

Play=1-12838 x ¢ 9% x f
f.o11 1 1 1t 11 )
Al k- — e —— e - eee—m — - .
Wtgatas eetass B tasent
1 1 1 1 1 }
=1-12838 x 0-778 { . R
x 077 801><2x 1+U : GU+840+ FAEY S -1
=0-06419 x 0-778801 x 1-000000
0-166667 ”
0-016667 O
0-:001190 A o
0-000066 D)
0-000003 O
=0-56419 X 0-778801 x 1-1845643 A7
—0-52050, O
) £7)
3% Next, since /= =2 I e~*dx, we have \.w:\\'
Ju \/
it — JrP () = 2{ e~ N
= ] e=vy=tdy, "N\
where a2 =y, o RO
2%
N T & 12 _Vh R T V)
=[ -6 -Jy“’.\‘j J TRy
=gyt +_E;;E,J - llr'J"" 3 [ — i —1
Y 3 L Ly dy
= n7 i M!_}\_ !‘p—?f? -1 1'3 — g1
Q@ e
and therefore O\
g 1 1.3 1.3.5
‘I’(i{.‘) = 1.—‘3-);—‘[] T + .—,,I..,— ’2'-I':-! L A l‘.
N (20%) T (202 (229 i

L £/ . A . . . )
This is anpadyimptotic erpansion,® which is convenient ior
computa.ti%n’Wheu @ is large.

¥

A tal‘;‘\' values T is
o »\\3‘1’(35) . Dl . Bz} 2. izt

0'@‘\i W’ 0-0000 06 (6039 1-3 09340 9.0 0H853
O\{' 01125 07 06778 1-4 09583 2.1 04070
0-2 0-2227 0-8  0-7421 1-5  G-8G61 2.2 04081
a-3 Q-3286 -9 07960 1-6  0-9763 4.3 000890
04 04284 1-0  -8427 1-7 0-BE38 2.4 09953
0-477 05001 1-1  0-8802 1-8 009801 2.5 0-94%96
0-5 05205 1-2  0-9103 19 00928

* Of, Whittaker and Watson, Modern Analysis, ch. viil.
+ Morte extended tables will be found ina memoir by J. Burgess, Prans. Koy
Soc, Edin, 38 {1808), p. 257, CL also W. F. Sheppard, Blomelrike, . (19033, p. 174
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Er. 1l —Shaw thet the probability that the desiation e uriler thaa o
18 sbightly less thaw 0-001 when D= 00081 or e =92

Ex. 2~—Obtain the formule

pm it 1
Plri=1—-—-
oy W
T+——
142
1 3y
1+,
1 Q]
where 4 =5
4
93. Means connected with Normal sttr1but1qn\§\ \T\ ith
the normal law of deviation D
Ao N

—hiZaE g, ”

[ Lot {7

v i, ,\(/\
the arithmetic mean of the nth powers f\the absoluts values
of the deviations is O

b

9, \d
2}3;] ?!g‘}'lzik%\'
W ) N ’\,l
Writing 72:2=y, this beeomes
1 .m“ n—1 1
R t::‘“ 2 6"‘}[!’?
\"fsﬁ.‘@l 0 y }
L a4 1L
. & ()
or ¥ ¢\J

— "
In parhpmla’r writing o for —— INE ! - Wwe have

' Anthmet@@r mean of the ab‘aolute valnes of—

o) 1 3
\” First powers of the deviations = hrfn = \/ .
A Wi T
g ¢ s.:::‘ Second . s
Q\) N/ Ll H] » 21&2 2
/ 12
Third i WL 22 .
’ ” -
3
Fourth . Y == 204
, 2 842
"ifth =" _°PNT
I u " » %5 M/_ N I i

* Of. Whittaker and Watson, Modern dnalysis, § 12.2.
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From the above we see that fe square of Fhe aean of the
absolute deviations, divided by the mean of thetr syuwres, s the

&)

2
el —,

w

. . h .
K. L.—S8how that in the curve y= -J-_rz—“-"‘ the product of the ahsrissa

and the subtangent is consbant,

. ) B, ,
Eu 2.—-Bhow that in the enrve y= N e~ "% the whbscissae of the points &\
of tiflexion are o, ¢ ":\'

94. Parameters connected with a Normal Frequéney
Distribution. N

19, Let the eurve which represents graphicall(@* normal
frequency distribution be written

§= _;'.l‘;—ﬂ—k“(r—a)ﬂ' ,”.\\';
.

Then the arithmetic mean of all the obgétf;a.tions

- j ’ -h, r""f(“jg}i‘li}i’a}
— N"{"T {:“N‘
= tf. ‘:«:‘w
20 The quantity ¢ which has been introduced in the last
section is (as we have séen) the square root of the arithmetic

mean of the squares'of\ﬁ;lf’e deviations, and hae the value
O 1

o is called tfl\é".érmadr'r.?'d deviation, or the gradralic mean devia-
f1on or}Q’e}e’-ﬁ'm- of wmaetn syuire®

Igr.}thms of o, the normal law is that the probability of a
deviation between 2 and @+ dv is

\\’ 1 e,

N (27:)8

By the formula which gives the measure of precision of a

linear function of deviations we see that the square of the

standard deviation of a sum of quantities is the sum of the

squares of the standard deviations of the separate quantitics.

* Tt was called by Gauss the mean errven
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Hence the standurd deviation of the writhmnctic weon of m
quantitics is =% x the standard devivtion of one of the 1 andities.
3" The arithmetic mean of the absolute valies of the
deviations is called the menn absoluic deviation* Proting it
by 7, we have (as wo have scen in § 93)
1 2
L A=V
The arithmetic mean of all the observations that ave e ber

. 2 . . O\
than the mean « is @ + \/ =+ o, 80, denoting this by A wehave
o N

s W/
L 3

o= \/E (A—a)=1-283 (4 - 0N
9 {"

This formula is convenient when the obseny®fions are wiv
the rough, not arranged in order of magaitude ; for tiwn, after
adding them all and dividing by th(;ii\%ﬁmber §0 a5 4o shtain
tt, Wo have merely to add all that are greater than « and divide
. . 2

by their number in order to obbain @ + o ,\/ -

w

4% The prebable ﬁ?’?'{?i“«d’i""{_};{a?“f-’ifﬁ T 1s defined to be suciy that
the chances are even whether the deviation exceeds i in
absolute magnitudefor is less than it So if Q) dewnnies the
quartile, we ha*Q\'x‘

N 2% % . 2 O
N 4]

) T W
which gives
\\"\ Q= 0-476936 = p (say),
\ Q. 2
Ors — =067 i T _
X ~— 067449 (rongly 5)
\ ) 8o a=1-48260), Q=0.-67440+

¢} 18 connected with 4 by the equations
n=1.1829Q, Q=0.84535y.

@ i8 evidently that deviation which stands in the middle of the
sequence when the deviations are arranged in order of absolute

* Tt was ealled by Laplace the smemmn erpor.
T The name is due to Gulton,

P T T
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magnitude. It therefore {urnishes a means of determining the
parameters & or ¢ of the curve as follows:

Let there be # measurements. Take = eqllldl‘“:t‘l.nt points
along a base-line, and at these points ercet ordinales pro-
portional respectively to the measures arranged in order of
magnitude. We thus obtain a curve as in the diagram:

o

A c D E v B
¥ii. 16, >
. o o
Divide the base Al into four equal parts b points of division
C, D, E. The ordinate at 1) is thesmean value « of the
measures. The ordinate at E is s;[gh”’that there are as many
measures greater than it as lie betiween it and «.  The difference
DIY - RE or CC' - DIV is theguartile Q.
More gencrally, we can~ defermine the parameter % or o of
a curve Ly finding a menburc i, such that {say) p per cent of
all the measures fal \@bhlfl the interval between the mean a
and 2. In orderto obtain ¢, we have only to mulbiply (-, - )
by a known nuq’[ﬁf’ical factor depending on .
The denm{a 'of accuracy of this and the other methods of
determin nvu will be considered later (§ 103).
Tordex le%lnn results in terms of probable errur, the following
formwf the table uf’ the funetion $0F) is useful o *
~ "Y'}":OOL’)DOO P{0-1760563 = Diph, where pfh 15 the proballe evror
<\ A M0-6000000 = $(0-595 1161} =P(1-247790p)
0-7000000 — ${0-7T328691) =P(1-536618p)
0-3000000 = $(0-5061938) = (1-500032g)
0-8427008 = D(1) = B(2-006716p)
¢-9000000 = P(1-1630872) = P(2-438601p)
0-9900000 = B(1-8213864) = P(3-818930p)
G-9900000 = P{2-3276 754} = D{4-880475p)
0-0998000 = B(2-7510654) = D{H-768204p)
1 = '-I’(I‘, }

* Tt is due to Gauss, Ferke, ¢, . 109,
D31} 7
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We see, thorefore,
The probability that the error excecds- —

2-438664 tines the probable error is %,
3-818930 , by gho cte

Bo—d number of bodiss similer dn shape ond density differ 8
in mize, thetr Jengths being yrouped aboud @ anewn @ with stunderd deviaii
o If the weight of o Dody of lennth o ds ca®, show that the weiphits are
grouped about ¢ mean cn? with the ‘andard devigtion Scale.

95. Determination of the Parameters of a Normal
Frequency Distribution from a Finite Number of Obserya,
tions,—In the preceding section we have shown how to il the
parameters @ and ¢ {or » or 4 or Q) of a normal d]g,tfmbumrn
assuming tacitly that the observations are 1nhnu;e 1 nomber
80 as to {urnish continuous distribution. In rP‘i\ty however,
the number of chservations is finite, and we &ave to deterniiue
the best values of the parameters from thef”

Suppose there are # observations gltﬁlﬂ' the values x, 5,
Zgs + .« . &y respoctively for . '1‘h{, a“p} wort probability of the
value 2y 1 R

<N
‘.

1O
Fic

and therefore the @ pm{m probability that the observations will
give the sct of mh\&s\atztuallv observed is

g2

( )-‘m G Rk L I ) i

Tt 2

e mdat probable hypothesis regarding @ and o is that
whichhakes this quantity a maximum when Ty, Fgr + v v T BIE
supposed given. Taking logs, we see that
A

./ o 2
\ \ 2 log o+ (0, — ¥+ (fi ARt (;;!;‘.?_a_ - a)?
s

?

L
i

a7 - . ¢II . .
or 1L say, must be a minimun, and therefore = =10, which gives

0={(x - a) Hlrg—a)+. o+ (- o),

o1 R SR ) (1)
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art . :
Morzover, 2 0, which gives
T

n (o - aP (B = a4 .+ (= @)
o2 ¥1ZC L, -

o

and theraiore

ot= &._L)z + (irﬁ _ {6)2 L' + (;3‘.”-” — a')zl (2)

i

This the formulac (1) and (2) for ¢ and o are determined | /A
directly from the theory of Tuductive Frobability. This is,,
slrictly speaking, the ouly correct methed when the number nf\
observations 18 jinife, . QO

Eo. 1. Numbars which are given as decimals lo some definile ’??gamber

o wre wsnatly forced, o the lust diglt retutned 45y %E’fwmsed by
" when, the first digit met velatned 13 5, 6, 7, 8, Find the
st i dewintion or waean errer to whith « numbin o linble, due bo
abi A with forcing, ALY

Denoting the stundard deviation by o, we hayge’ ;\

o Bum of sguares of ail possible gymﬁted Gtails”
- Tumber of these ¢ tails”

TR

Y N
e2de NS
0B

- , sinee all t@ﬁh € Lelween, —0-3 and OB (in upits

T

f e i of Ll}{ Jast digit retained) are equally probalile,
—0% ) {"z\
giving roud 7= 0-2887.

p 3

Fx, 2.—Henbe'show that the mean error Iiable to oceur in the sum
of 1000 auitabers, each of which has been abbreviated with forcing, 1s
less than N imits of the Jast place.

3 3
AN

'g'ir‘.;:ﬁ.—zl quunbity i3 repeatedly wneastured, the mensures beiny suliject
foaPyors of vbservation,  Assuining the law of facility of error io bo such
\'ﬁkﬁ the probability of o velue between » and &+ di €8

—kE x-D g,
;‘zkze ! (i’-.II,

where b and b are constants, determine the most probable values of the pura-
mcters b gnd b when n observations give the valies Ty Ty « - o o, J07 05
the values 2y, 7y . . . being erranged in ascending order of magnitude

Here the o priori probability that the ohservations will give this seb
of values iz proportional to

1 ang- it b raz=dl F1mbi}
gt
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The most probable hypothesis regarding & and & is that which
makes this quantity a maximum, when &, #y . . ., &n are supposed
given,

Taking Jogs, we res that

II=2nlog k-

S0l bl

Il .
s & maximum, and therefore P 0. Suppose that b lies between v, and

#ry1. Then

/

bl gy=bl. 4]z b]]
T R
=(1+14. o o lhigmsF{—1-1.. .- l}gg»gw*ﬁarms’
and therefore eé!—f is zero when r=n -1 or r= jn \ W'e: sec, therefore, that
the most plaustble value of b 43 that one of :s:\.\g?:_-wazf-?ffies Ty Ty v 0y M
whish slands in the middle of the sequench éi{‘f;,e they are arranged @n arder

Sr
of magnitude, This value s ua]led ’shé.”med{an The condition ;_n =0
then gives for the deternmlallmr of the most probable value of &k the
equalion DN

1 1 A J
K,=._{|m{_b|.5‘]m2~b|+. 2=

~

96. The Praqtslca.l Computation of # and o —In calen-
lating ¢ and w,‘when weare given that the measures ), @, %y, . - -
have occ}u“:e,d ¥y Yo Ya - - - times respectively, we generally
ﬁnd it eenveniont to subtract some fixed number ¢ from each

e\‘:r’s in order to have smaller numbers to deal with.
e.,:,l—c_gl, x,—t=§, efe.

»\.'f 'l‘hen we form a column of the quantities £, £, &, . . .

thell Il n ” ylél’ y2§2’ y3£3‘ T
then 3 » u ylgl s ?)’252 s ?)“35.] L
the value of 4,£2 bemg obtained by multiplying #,£, by &-
and sum the column of 3’s and the last two columns. We
then have
2wy Ee+fly  Zyé ()
Zy Zy 2y’
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. 2 Syz—=oP Sylo+f-a)
wy 2 e —
_IyE o NEUE L e
=3y +_.(c—r.s)2—_y + (& — i)
Y
:f—'ygg—‘f’('—az—!— € — )2
g -s0-arsea,
or e gy @

2y
Thus ¢ and o are determined.

As a control for the computation of @, we may use the’
eguation O ”
Sim of all positive residuals = Sum of all negative ?gﬂs:ﬁglﬁais,
and as a control for the computation of o, we, filay use the

e tation o)
nel=Z{x —a)?
or no? = EM2 = 203M + aZM = 3M3E a3M,
whers M denotes the sum of the measures and ZM? denotes
the sum of the squares of the measres.
7. Examples of the Computation of ¢ and o.

o 1—The chest measuremopts of 10,000 men are given below, =
the mepsure tn inches a'n-fl:{}’v being the number of men who heve these
o, Find the fwo constants a and o which spevify the frequency
chigining the standdnd deviniion frstly from the mean-square of ths
devinetions, and sscondl{kﬁfrﬁm the mean absolute devintion,

a. N E = — 40} yé ¥
33 ~\) 6 -9 - 42 994
34 A/ 85 —~8 —~ 210 1260
35 /N 125 —5 —~ 625 3125
3N\ 338 —4 —1352 5408
R o 740 -3 — 9220 6560
JAN38 1303 -2 — 2606 5212
SN 39 1810 -1 —1810 1810
m\J 40 1940 0 0 0
N/ 41 1640 1 1640 1640
42 1120 2 2240 4480
43 600 3 1800 5400
44 292 4 888 3552
45 84 5 420 2100
46 30 8 180 1080
ax 5 7 35 245
48 g 8 16 128

Total 10000 — 1646 42394

N
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1646 i

Therefore =40 — 10000 = 39-835,
42394

: 2_ — {16482 = 4-2193

and 7= 15000 {0-1648) )

50 o=2-052

In arder to find o from the mean absolute deviation, we lLave the
following table :

z. - f=x- 10 k- p
33 6 _7 ~ 42 QO
34 25 -5 - 210 A
35 125 -5 - 625 QM)
36 338 -4 ~ 13538 )
a7 740 ~3 — 2230
38 1308 -3 #2606
39 1810 -1 WL 1810
30-668 650 -0333 o) - 216
{=39:500 to \
39-835) - AN .
Total 5007 “&{o — 90841
Now O Q"
fa o\ ~
- “'.\/ == Arithmetic Pﬁz@f’of all observations less than o
2ys 4“}{21’5
Dy 2y
A
. )
or (3035 _ o 2 g0 208
N\ -
AN T 5007
- A g
Therefore ‘“.’: 7 g-/\/;= 1-648,
P,
sa N o =1:449 x 1-253

or \‘\f = 2:086,
G

W\ L7 2.—-’5"5-43.(3 the mean value and dondard deviution for the following
x,\\l;f,g'egw.en.cy distribution, y betng the number of oceurrences of the messure

PN Trace the normal cuive which has this mean paie wnd standard devtation
\ /  ond compare 1t with the originel data,

w. 1 2 3 4 5 6 7 8 9 1o 11 12 13 14
¥ 6 10 2 11 15 18 18 34 32 30 39 45 50 43

“ 15 16 17 18 19 20 91 29 23 24 25
% 38 96 34 28 92 17 11 e IT 4 4.

Ex 3.—Determine the standard

Ez. 3.—Det deviation from the menn whsolute
devintion in this lust esam ple.
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1—-The chest weeusures of 10,000 men nre as SJolles, @ denoting o
in fnches, and y the mnmber of wen who huve that measure,
ine the standard devfation by finding the place of the guarisle.

a3t 33 36 34 38 39 40 41 43
. o 31 141 222 732 13205 1867 /852 1628 114R
; 586 177 449 1231 2Has 4408 6285 7013 8061

Al

i
w43 14 45 46 47 48,
o G 160 &7 38 7 2

By YT0G 9866 o953 0991 99908 10000

i {¢ o be remembered thab under “z= 738" are grouped all meun
wheae reasores are from 374 io 281 inches, “I'be sum of all measiros
fromn the lowesl to w= 38 (fe to B8k inehes) is 2586 and thestabe of

nerense of men js aboul 18 per gk, ineh at B8, so thal 250 ¥l be
= 2%

the qam of all to 38478 inches RO
Arithmetic mean a of all ile measures is found ‘4o e 30-834,

and (= 39-834 — 35478 = 1356, '\

#0 = 1-483 x () =1-483 x 1-366 =201

$
Tet us now fmd the quartile from 1.-]LBN0‘QI'E‘]? ond of the sequence.
The sam of all meagures from the laggsi\dbwn to &=42 (e to 414
inchesy is 2087, Adding hall the nupmdgr opposite 41 in the tahle,
we see that the number down to 41 jitehes is 2001, wlhiecl iz 2500 + 401
o 401
e grariile will therefore be al 41 o @, where #=1oo0 = 0248,

g0 that Q= 4]"-2-16 — 30834 =1-413,
and 483 % 1-412 = 2:09.

The discordanceg b&%e&m Uiy and the former value is, of course, due to
the aheenee of per-fé(}t normality and comtimaty in the distribution.

The mean Q}(ih{.‘: iwo vuloes of o obtained by the quartile method is

therefore o =@W5.  This is close 1o the valuce obteined by the method
of § 97 4 d,\ﬂle mean abeoluic deviation method, which are found to le
2.0:’. \QQ 206 vespectively.
98, Computation of Moments by Summation.—The
quﬁalntiti_es M,==y, M, =3y, M, =Ry, . which are called
N/the moments, may be readily formed by mere addition n the
following way.
Wo use the notation Sy (read “sum of ") to denote the
funetion whose first dilference iz the function ¥, so that if
Au=y, thenn="=Sy. The symbol 2 corresponds, in the Caloulus

of Differences, to the symbol [ which represents indefinite in-

tegration in the Infinitesimal Caleulus. Just as a eolumn of
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first differences of % can be formed from a column of values of
u by subtractions, so a column of values of Ty can be formed
from & column of values of y by additions.
Suppose the set of given values of ¥ 18 % oty Yosg - - -
Yy 4w corresponding respectively to the values 7, (r+1), [r -2},
. (r+n),of . Form a table of sums of the function y by
additions from the foot of the column, thus:

a v Zy. =2y, N\

i e Yo Yra1 - o Flrin! O
r+1 ¥rs1 |Hes1to o o Fiegn Yria + 23’?"72 +.. ‘K L
7+ 2 Yraa | Yryat. o o ¥ria Yrot 2Yriat+ ey ( o

. \ "‘.

D

- R\
PR =2 Yrinod Yrinezte o F¥rin | Prin-3BBFrrn-1+ 3V pn
r+a—1 | tinct] Yrrn-1F Yot : ff-‘- S 2%
r+an | Hetn | Yrgn - :’z’Nv}

‘ \ bum == s,

The uppermost number o‘n the Ty column iz evidently i,
the moment of zere orders Letr the uppermost number in the
2y eolumn be denoted. b) SO, and the uppermost number in the
=y column be deno@ by 8. Then

_..U =\§{ :
b‘l‘““ Yrart 2po+ ez +. o o+ Pllpay
=M, — M,

Whe‘—‘&\m —?’fr+(?‘L1) Yopr o o o E Pt m) Y, I8 the moment
ofb{&!f 1.
’\fhe sum 3, of the Xy column is

aln+ 1
( 2 _)?f'r—f—n

<3 M- (20— 1) M, 57 (r-1) M),
where My=v2y -+ (r + 121+ o o+ {r+ 2)2p, I8 the moment

of order 2. Thus M, and M, may be determined from the
equations

Se=Yep1+ By + 0pust. . .+

I, =8, ++M,
My=28;,+ (2 - 1) 8, +22M,
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and thereiore if these relate to a frequency distribution of mean

» and standard deviation o, we have

M, 8,
= ==+,
M, 3,
oM M2 28 5 (S
M, M2 M, M, M,
s, 8 82
ar _aa M _ {1},
8 S (so)

The higher moments may then e found in the same way 1f\ V)
7'\ ~

desired.”

Tet uz apply this to the computation of @ and o for the chest thehsnres

of Tx, 1, § 87

N
« N7

o { W

an at. Zy- \‘\;}y.
23 g 10000 (= S) NS
24 ah 9994 ) x',\\88354 {(=8)
35 125 9959 WLV 68260
6 338 9834 N 48401
37 740 9496 4 ™ 38567
38 1303 8756 ~an® 29071
39 1810 745308 20315
40 1940 5848 12862
41 1640 3703 7219
4% 1120 <\2063 3516
43 g00 , L0 943 1453
44 929 X\ 343 510
45 84N 121 167
46 @0 a7 46
4% ()5 7 9
PR M 2 ) 2

N\ §,~ 288852

Tht};'&j}h}e
...\s:\;\ M, = 10000 =8,
N a=2i+r=s-s354+33=39-8354,
=0
and RSP T (ﬂ)gzm-woa— 68254 — (6-8354)
8, 8 \5

= 4212 as before, giving v=2"05%.

% For a foller investigation, showing the advanta:
sums, el s note contributed by G. ¥, Lidstane to G. I
whles of Mortality (London, 1009), printe

ges of contrgl OF MEAT
Hardy's Construction of

1 on pp. 124-128 of that work.

193
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iz, 1,—Using the date of Ex 2, § 97, conepute the ralie of o by the
wmethod of summation,

B 2.-—The mean daily temperature at Brussels on the 310 diys of the
months of July in ten years was gz follows
Meam femperatwre . 1155 1275 158%5 14%5 15°5 1675 1755 1875
Number of days. . 1 g 21 24 33 32 49 35
Mo temperafure . 19%5 20%5 2I%5 22%5 2375 24™5 235 26%%
Nuwmber of days . . 31 24 21 17 7 2 3 1

Find the mean temperaiure and stondord deviation By the -m,‘,-g’.h';(} of
SUTRIRRTION, A ¢
¢\
99. Bheppard’s Corrections. — We shall now i1u\fest-iga.1ge~;it eafraction
which is to be applied in ealeulations such as those of the preceding section.
Let y= flz) be the oquation of a frequency curve, _{Th integial

2 o #;

f DI A, NN

—_— Y

which is called the pth moment of the curve, WL be denoted by .

The slatistical data which specify fredyoney curves are often piven
in a snmmarised form frem which N oments cannot be | cowvuted
directly with aceuracy, For instange\M1 statisties of the chesl roeasure-
ments of a growp of men, all men, whose chesl meagure lies between 38§
and 38% inches might be pivenyinder 1he heading “ 39 inches”; all
men with messures between'fﬁ}% and 40 inches might be given under
the heading %40 inclms,’ﬁfsjh(l so on, The mumber given under the
heading “ 40 inches” ia, thorefore not a true ordinate ol the froqueney
eurve, bub ia really E~1§ arca of that strip of the frequuncy curve which
is conprised betwe&g“}. e ordinates at p= 39% and =40 ; that js, it is

4 \\ 4

WV Flavda,

< g
Slmmé, then, that . . . 1

s " e B_g W_yy My Lyy By . . . nre the valmes of
& foryWhich stutistical data are given, these valuos being spaced ot

f;gk Vintervals s, and suppose that the statisticsl daty are the pumbers

".‘; e
LN P g iy ey gy L Whero ug— fixz)ds, and enpposs we
"\ Ty
\ zalenlate the quantities
o
. ’ g
ity = 3 Py, (1)
S=-sun

s0 that m," is a Tough value
which is equivalont tu eollect]
7g~ dw and w4 Ju

for the pth moment, obtained by a process
ng at g all the individual measres between,

The problem lefore us is to oltedn o formada

hich will enable us lo
caleulats the frue moments ™y from the rough mom

ents m,. We shall



NORMAT FPREQUENCY DISTRTLRUTIONS 165
suppose that the froquency curve has close contact with the axis of w at
Luth ends ; go that

o

]
Tty = f whfivde=w = zffix {2)

—e f=—

Now, hy the Newton-Stirling fornula (§ 23},

o2
Sl = Feg b | Afleg + A S — i} +%A2f(-'ﬂs—’”-‘}

1nd afn2— 1)
i YR }ﬁ { A3l — )+ APl — 2o} + = A~ 2w 4. .
A
£
30 We itave "'\\“L\’
N
) 1 17 « \/
f ‘ Fios + ntiddn = flug + 3 @A{r(a:g — ) — 25 “’4‘3 iy — \ Wi,
v T , ’x\ ’
LV
In parlieular, when flx)=¢% we have o \.'\‘}

AR, — mag) = B2 inh2R %u'\\\

Puiting &= 4w and dividing throughout by @x*,\he expansion reduces to
g ‘e

ginh 1 17N
=1 = sinh? § — .— Sl
7 14 31"~mh 0 ‘_5:'?]‘&&

s’ - g - -
the voeflicients in Lhe ge1remT‘ expansion way be determined
$

N’
nhtd 4. .,

C1s T E g )
Since — I ()il = { Slwg + nuydn,

we may write A\ —hs="—gr Fixg),
RS w

where sinli2* § s{"hida, for the operation (JA2E-%  We have therefors
from (1) \"’

\v L | = ‘:ll’}]l
,\ lmp' = E ;3’23 p-?.f,; = E — —f( ,.)
8 \ 20 s — o $= —
"\"“ . » g
#A3ad ginioe T Py dguwl= = f (was_q™s

\/ s =

the terns of Toth 31(1&3 of this equality being the same but counted
differently, we have

o PATE I fley = 2 fizd G T
F=—0 g=—u

Therefore -
i <o PR

= ff,g)ﬂnh_g po 3 f(xs\fl+ BRI } .

g=t

1
7
My =
w B

N\
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d )
Now if 1 denotes — we have

d,
E=eDand A=evd -1,
wl
80 1A~ =ginh? -
Heuce we vee that §=1twD and
) = [, w22 et 125J_)3 .
mpr=wsu§iwﬂxs}11 + o FErait SrgpTe - - [ N
E a2 ) \
= _E f(ﬁ«‘a){ﬂfaf’ + g — a2 £ )
==t . qu r’ ( ‘ ‘(;}\l_ . 1
+5[24P(P_ Li{p~2)(p ?‘3}"«»‘ R |

or finally, snbalituting [rom equation {2), we have ¢\;,"

/.
<

2 A }
L w ‘ )
5 .y N s :
g =iy 3—1?‘111(10 —my,_y+ FTgalip - Lip Sy =By g+ B
Taking p=1, 2, 3, 4, b in succession Q’&j, we have
my’ =y, AN/
r — 'l Lo
Ty =g +’-]1:?f;.~ém",
g = 0y oY woml,
my = wpd Juln a T bt
L e N L g
*}?15 ’:w.gi?,& + T ms + 16“’ ml,
and lLence  »

» o,
{..,t\zrﬂ ; .g[}r}
&\ 1._ 1!, 1.9
Wy = "'”-‘2; - }— ; "”;0 ,
i’j-.'_3 = ﬂlg’ - "‘fﬂ';nl” i o
1, - —é;'wqma! + T’Uu mp s
g = ity — Zeotimg + Fondm

\<& "
":Ill\xeﬁe formulae, which express the truc woments in terms of ihe

aﬂs@mﬁmate mmoments, the enrve heing supposed to have close coulact

With the axis of @ at both ends, are due w0 W. Y. Bheppard.®

't 100. On Fitting a Normal Curve to an Incomplete Set of

Data.—It sometimes happens thal we wish to determine a normal

vurve when we know only the ordinates W1 Yo Yo

. of a get of points
of abscissa =

1 Fos - . . Which are cxlended over part of the curve, no
information bemg available regarding the rest of the ourve, In (his
case 16 is best to treat the problemy as one of filting & parvabolic curve
#>=a+br+e2? for the given values of 7 where 2 =logy.  The constants
@ & ¢ may be determined by the method of Least Sguares (Chapter 120}

101, The Probable Error of the Arithmetic Mean.—Let

* Proc. Lond. Math. Soe. 90 (1898}, p. 862,
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m, dinote the arithmetic mean of n measures M, My, . . . M,
0 thai

M= LMy 4 My . ML)

Thex if 7, denote the modulus of precision of the arithmetic
mean and & denote the modulus of precision of a single
obgrvation, from the formula for the precision of a linear

function (§ 89), we have
e
G Oy
s o
or Y N N

The probable crror of a single measure heingm@ﬁhectcd
with the modulus of precision by the equation Q,’=£, where
p=0-476836 (§ 94), we see ab once that the 2{5&%3}36 ervor of the

qrdihinetic mean s 71"-}_-& times the p-a:ob@&‘c} error of @ single
0GR, RN »

162, The Probable Error (f° the Median —Instead of
tsking the arithmetic 102D oPthe measures of an observed
gquantity as the estimat@...z{f the true value of the quantity,
guppose we NOw Aarra inall the m measures in the order of
theit magnitude ang sﬁich the middle one, which s called the
median®  Usually;the median will be close to the arithmetic
mean and wi]}{uinigh an independent estimate of the observed
quantity.« )"

A maré precise definition of the edian is as follows: 1
Tt g v ftg + < » %a be a set of real numbers, whirh may or may

n;‘g.ki}i}ﬂfll distinet. it
]} n
} -
\ Q)= T (m— )t
i=1
The value of & which reduees Bp0x) to a minimmn is il arithmetic nean

of the numbers ¢y, » + o fa If the condition that Sy) be a minimum
is replaced hy the vondition that

R
B = 2 | — ;]
=1
be reduced to a minimum, the median of 1he s I obtained. It is

* (3f, § 05, Bx. 2.
1 Dunham Jackson, Bufl, Am. Math. Sve. 27 (1927% p 160,

N
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uniquely defined whenever » iz odd; if the numnbers o; are arvanged in
arder of magnitude, so that

L Ry

and if n =2k — 1, {he median is simply ag, the middle one of the o,
The medisn is nnigquely defined also when # s even, » = 2k, I it Lapens
that az = a4y, being then equal to this corsmon vadue,  Otherwize the
definition is satisfied by any number = belonging to the inlerval

A =& =051y

and the median iz to this extent indeterminate. Dur for each A
of p>>1 therc is a definite number ¢ =x, which minimises the suys
" R
S 3 Jamail?, O
i=1 -
and @, approaches o delinite limit X as p approaches 1..\‘1‘]13} value of X
cofnicides with the median as already defined, in thé Gfies wlere 1lial
definition fs determinate, and when n =2k and wp¥ayy,, X i a defiuite
number hetween ey and @upq. I3 thus sergiMlo suppleneni the
former definition. ..\\,}

We shall now {ind the probablgsembr of the median in arder
that we may judge of the relative(Zd¥antages of the arithmetic
mean and the median as estimates of the true valuc of the
observed quantity. N

Sappose we have n mBakures (where n is supposed a great
namber}.  Then the gtabability that any one measure exceeds
the true valne is'g'"g}nd by § 90 the probability that exactly
(m +7) of the ukasires exceed the true value is

& ) J (,%)ag_

I\T:méf;}f A is the modulus of precision of the measures,
tbfip‘rtibabﬂity that a measure lies at a distance betwecn 0

3 = + " E I
»\.?ﬁﬂd ¢ from the true valuc where ¢ is small is is—”*'—x“dg: or

£ )} 0 &S
A\ LN

Y

. ko,
approXimately ;/;g; and therefore of n measures the number

) . nh . ale .
between 0 and £ is Fg. If this numberis 7, we haver—= - fe é

of ; VT
the ({m+7) measurcs greater than the true value, In

excead £, Therefore the probability that the median is at the

point £ is
N
NEV

iy
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Denoling the value of £ corresponding to {r+1) by £+ d§, then
g b nhlé _ng), and the change from # o 7+ 1 corresponds to

L N
,J-r

. who, . -
an increase of :/----cig in the number of measures, 80 df= .
T

The probability that the median lies between £ and 5+;3—'(Z is

therefore -
37@1252 SphtEd \
nh 2 ) S
JEWTT Sy BT o
Thus the probability thd.b the median lies ab a dlbi;a}nce
between £ and &+ d¢ from Ghe trme value 18 RY «:
.E @ —uﬂézdg ",'\“‘
T ! \J
e TT ,‘/(2-}m}, RS
where I]Eu—-%/Tr . K7\

For this result we sec that the modulﬁs of precision for the
detorpiination of the median is ]r»& (2—_%) and therefore (§ 94)

the probable error of the meclif@fi.’ s

S h\ 2n/"
where p= 0-4769: JG\\ )
Tu the last sechign*we have seen that the probable error of the
arithmetic me(}ﬁf is k—p o Thus the error lo bo feared when e
{ \ \
{okee éfK%edzrrra s the lre value 13 ,\/g] or 1-258 fimes the
\ 4
erroglp be feared when we fuks the true valve o be the arithmette
.*x?.r\fn
) 103. Accuracy of the Determinations of the Modulus
of Precision and Standard Deviation.* — Denote the =
deviations by e, € - « » €n, 804 the modulus of preclslon by %;
on the hypothesis th&t % has a value II, the a priori proh-
ahility of the occurrence of this set of deviations is

i
(—3—)“ p=EHe - oo Hed)) (1)

* Glauss, TVerke, 4, 1 1005 b e A Fisher, Month, Not. 1.A.S. 80, 758,
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while on the hypothesiz that 2 has a value {(H+ A} the o
priort probability of this set of observations is

(H_f.‘k_) SR D) )

(W)

By the Principle of Inductive Probability, the ratio of the
probability that {H + A} is the true value of / to the probability
that H is the true value of 4 is equal to the ratio of the o oxprege
slons (2} and (1}; that is, of

(1 +ﬁ> g~ GAHH® (24 . . . +ed) g unity. \'\ (5)

XNow let H be the most probeble value of 1 (w ‘M'e value
which makes (1) a maximum), so that '\\

N
H= [{__ 2 WY
\/ 2(e12+. . .+x£.,,§,l}

Then (3) may be written

s 3

-(zAH+J\2)
(l + H) ‘*H"’ to unity,

or e (H’“)_ﬁw(H ) to unity,
' ) e A
ar ,~3\~i2+“'m_ to unity,

or, appromma,te])q\?x being very small compared with H),

_ A
..\; ¢ T g 1,

The{afhre the probability that the Value of & lies between
I -Q\imd H+r+dris nearly

™ TAS

..\\z . Ke Wy,
\\. v . . nA
/' where K i5 5 constant, which, sinec Ke g =1, is given by
1 "
K= aN

Therefore the probability that the value of % lies between
H4+xand T+ A+ dris
1 Wt __n_)@
VRS
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4

or the wmodnlus of precision for the deermination of T by the
smei-square method s Jnfh.

rom this we deduce at once that the probability that the
stundard devialion o, as deduced by the root-menn-square method,
lies betiveen o+ 2 and o +2 + dw is

22
Jie -5
e T

N
s mmodulus of precision for the determination of the standard
on o by the rool-mean-square-method @ nfo. Hence\))
probable error of the standard deviation o, a8 deduced by

N

ront-mean-square method, is N
0476936 LV
- — [T,

mo
b

{1auss * extended this by showing that the.probable error
o the standard deviation o, when it has been deduced by
~suputing the pth powers of the errorsgigy’

s W

0-4769360./2 (=L(IHE) 11"
it 1 "
P "L.“if(}—;_) }

s gives the following reSults:
When o has been Kc@,pﬁted from the—

- 0-5095841
1. 1st powers of the errors, the probable error = A gl

r

A N
A\
P\ 0-4769563
TT. 2nd N » » ” = _7 T
:“\:’ ,\,f?.’.’
AV 0-4971987
11 3m& » » s BN,
A 0-550'7186
L) = -
(\T‘}‘ Ath " » " » \/'n' o,
: 0.6555080
V. 5131'1 21 2] . » » - % I
0.-755T764
VI. 6th » " " . == n

Tt is evident, therefore, that the most advantageous method
is the root-mean-square. In fact, 100 ervars of ohservation

* IForke, 4, p. 109,
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yield by the computation of the root-mean-square as good a
valuo of the standard deviation as 114 treated by 1, 109 by
TIL, 133 by IV, 178 by V, 251 by V1. There is not much
difference as regards accuracy between I. and 11, and of
course L. is much more convenient for caleulation.

Lastly, we must consider the accuracy of the detevmination
of the quartile by arranging the # errors of observation gocord-
ing fo their absolute magnitnde, and taking the middle vhdaas
Q3 or, more generally, arranging the = errors of ol".usgz\ffgtion
aceording to their absolute magnitude, and then takiu s the
error z, which has m, errors less than it, and de];]',}":i‘ﬁg a value
H for the modulus of precision from the equation™

2
My -\

29— & (Hg,).

Let B be the true value of the modulis of precision sud let
# be such that he= Hz,. Then z is<bhd position that 2, would
have if the number of measuresive¥e infinite, so that nerfect

aceuracy in the determination ofﬁar; ‘conld be attained. Wi ting
ity \

=P 1-p=g¢, we can Blﬂ)ﬁfr }Jh&t the probability that out of
% measures {all taken ,pésit:ively) My +r lic between 0 and = is
K 1

2n;
RS =) M
Now the prebability that a measure (taken positively) lics
between % und « + £, where £ is small, is
N 2%

O gty
O -

AL
afid therefore of m measures {taken positively) the number

'"\ W 2nh T
) gy
NES
If this number is 7, we have
= 2%?&@ -patg
R

80 the probability that 5, =z 4 ¢ ig
1 _RORER ol

_. : — g uw

N (Zwnpg)
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and therefore (as in the corresponding discussion of the
median, § 102) the modulus of precision for the determination
2nYhe M0
of &, ia "'/—(L Since Hz,=constant, we have
' Jipa=)
Hde, +2,0H =0,

end thevefore by the formula for the precision of a linear
frusiion of deviations, we have

Hadulus of precision for the determination of 4 by this method

= ”J times the modulus of precision for the determination of 25
T \/

S Onme Wt A
= N ! . &N \

/o)
Hance the square of the standard deviation for the, Alegerrmina-
tion of A by this method is v

DA™ onzs N
Anzx? ; RS
. ; ) .
ar if ¢ be the value of 7z obtained from ¢he equation f=(b(i)’
it is ’
12 w2 () (L) e
Zn N

In particular, when we{determine the quartile by ﬁndi.ng
the deviabion which is¢in)the middle of the series of devia-
tions arranged iu’aﬁy}lute order of magnitude, we have
B(f) =g =g=1, l@p’ where p=0-476036, and therefore the
standard devia,Kio:r;\ for the determination of A by this method is

& w Ao
A NES s
BO ﬂlejﬁ'}obable error of the determination of the quartile by
thiglniethod is
; FNEE /E Qe”z
Noaodp

o .
— . g (},
or ’\/8n N

0-79
_JE.Q_
This result is due to Gauss:* it shows that {on the average

* Joe. oif.

or, in numbers,

\.

)¢
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of a large nuwber of deferminations) 249 measures, ireated
by this method, must be taken in order to jyiell as good
a value of () as 100 measures treated by the rooi-usan-
square mebhod: this determination is nearly the saue in
accuracy as that by the sums of the 6th powers of the crrors.
Wo can, however, choose m, much more advantageousty than
this: in fach, determining the minimum of the function

B(H){1 - 2{H)} e
£ O

Q"

we find that it has a mwinimum swhen £=about’1’\-:(}5_, and
thercfore the most acenrate determination of thel standard
deviation is obtained when we determine the ofdr «, which is
such that about 85 per cent of the errors (aﬂ"‘o}ken postlively)
lie below 2 and about 14 per cent above @Mhe probable ervor
of the standard deviatien found from, Lh\s value of & is then
only 1.24 times a8 greab as the prnhal}}e error of the standard
deviation determined by the rootumean-square method.* By
taking {=1 we obfain the fo]lowlrlg easily remembered preccpt:
the measure of preeision is thasPeciprocal of that deviation 1w ich
is evceeded (in ubsobute valud) by 76 per cont of the observed do-
vlabions and not atigighd by 8§ per cent of them : for these
percentages we can(put more simply } and §.

104 Determi‘ﬂﬁtlon of Prohable Error from Residuals.
—1In § 94 we hive regarded ¢ and & simply a8 two parameters

which ocepcn the problem of fitting a curve of the type

oy 1

Q N

te\eertain data. When, however, we are dealing with errors of

~ \neasurcment of an observed quantity, it s necessary o regard
S\ the problem from a somewhat differcnt point of view. Woe
mnust now take inte consideration the fact that Lhe quantity
measured has a certain irue vulue which, though unknown, must

be regarded as possessing a physical existence: thig true value
must be distinguished from the erithmetic mean of the
measures, which is merely the best estimate we ean form of it.

The differences of the measures from the true value of the

* This was pointed out by ¥. Hansdorff, Leipziy Ber. 53 (1001), p. 164,
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quantity are the errors, while the differences of the measures
from their arithmetic mean ate called the vesiducls. We shall
now show that the probability that the error should lie
between prescribed velues ¢ and b is nob equal to the prob-
ability that a residual should lie between o and &.

Let the measures be denoted by M, M, ... their
arithmetie mean by @r, the true value by s, and let the
residnals be

1y = g — My, ta=y— My, . . . O\
while the crrors are O

g=m—M, e=m—-M, ... . N

Addine the last equations we have (denoting the &M of
N\
guantitizs by square braclkets) )

W

[€]=nm — [M]=nu - mnox.’ \\;

- 3 £ &/
Thereinre Mg =T — = 2N
: LN
le] ap o) L€l
and Ty=m— —1\'11.’71 it
or m—1 1% 1€
R — LT D
1™ n Q P W
\

Thu: the i‘eszi(iua{@;}is expressed as a linear function of
the errors. \

Now let £ de:[m:;e’t,he modulus of precision of the errors, and
A the modulpd o? precision for the residuals: then the formula
for the 'pre@%ﬁon of a linear function of errors gives

O e 1 =a-1
f”\ RET ( n_) FEa (- I)Fﬁ-—z— “nkE’
\” Foad
@\ﬂfe probability that a rosidual liss between » and v+ dv 18
; B
/(_ﬂ_\ . _”_{’_B_T-—TC‘;{@.
Niwn-1/ 7
- 1] 1,
SlllL-B :2’,&,—2 ] _ﬂ,_ a.nd 2'&'2 T,

we have therefore

- JdD
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and the probable error or quartile of the errors is
Q) =0-67449+
(1]
067449 ,\/ (:ZL).

and therefore the standard deviation ol the arithmetic ncan
2 ",
nf the » observations, which is —— | is / (—_ [1’ ] - J, while the
TN e — 1) A
Probable error of the arithmetic mean is 0—6744-9,\_,/ { *—A—\

These are generally known as Bessel's formulae.
Similarly, the mean absolute deviation y is gizn:h: in terma of
the absolute values of the residuals by the etgi:i’pion

e ol
tn(n = L}N0
5o that.in terms of the absclute va:h@s"of the residuals we have

A\ W

== ey )

&\

and the probablo error of i single observation is
“ixar  0-84535[| 5[]
0‘8‘1:035 = " = !
V= -y
whils the prglﬁhle error of the arithwetic mean of # obuervas
bions is n - 1)2 0.84535[»|].

Thisy ff}riuula is due to . A. F. Pcters.* It can be rmore
reac'li\kgg'\é'omputed than Bessel's and is in gencral sufliciently
ag%‘\umte.

N 105, Effect of Errors of Observation on Frequency

¢\ Ourves.—Let a large number N of individuals be measured as

\”\} © regards some attribute, and suppose that the number found
to have measures hetween z and x4 di is N ylz)dxn  Suppose,
however, that the measnres are known to be vitiated to some
extent by errors of observation, cach measure being liable to

error with a modulus of precision A

; and suppose that, in
consequence of these errovs, the number of individuals having

& true measure between » and w4 dr is not Nylz)lds buk

* Asl. Nach. aa (1858), p. 20,
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Nulsjdv 1t is required to find the function %(2), the function
y(») avd the modulus % being known.

There ave actually Nuft)dt individuals having the measure
betweei £ and ¢4 44 In consequence of the crrors of measure-
ment, wizse contribute a number

h
No(#yelt— o0 gy
w( ) ,\./.a i fi

N\
o the moasures between x and 2+ . Therefore the number
ol meazwres observed between x and x+dz 18 e\
g - ;"\ v
1\,}1{3;&:’ f e~ MU =P (t)dt, A\
N . N RO
N&_ ™ (&
or —l f e~y + s)ds, ' "’\
NA, " 2\
or zf&x_: f_ m@'ms“{fu (a) + a1/ (2e) + 27“{' @} T }dS,
or Nl (2) + L () + —1:~r:“"(a'-)+
) g O g T
Thus vha functions »{z) and w(d)are counected by the relation

N 1
yle) =ufz) T‘%%() g™+

whicl: readily inven%'\:info

O 1 ., 1 ..
-15.(@2.,?;;(.;7) — 4 (i) +3—2h—‘ly“ @ +. ...
Thig cquatje@..determines u{i} in terms of y(z).
O

N/

“ﬁ.\’\l\i[SCELLANEOUS Fxanrues oN Cuaprrr VIII

\}" The following frequency distribulion was obtained Dby counting
\w\ﬂfd nmimber of letters per line of a hool. Calenlate the mean value and

the standard deviation, and indicate what might be expected to happen
a8 the numiber of ghservarions iz inereased.

Number of letters tn) 32 33 34 3D 38 3% A8 39
Freguency (f) 1 2 2 10 23 31 42 b4

ny 40 41 4 43 44 45 46 47

{fy 46 55 Al 28 18 10 2 2

{Edin. Univ, Honours Exoem., 1918}

[ I Ea]

2. Compute the mean height and standard deviation from the
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following data by the method of summation, verifying the resuii Ly the
root-neansquare method.

Height in dnches (f) 545 55-5 56-3 575 683 615
Frequency (f) 2 4 13 36 69 328
(k) 82-5 635 645 655 66-5 675 700

(f) 366 326 9220 157 82 B2 4

3. Caleulate the probability that in & given imterval of rinw there
will be 8 given mumber of “calls” at a telephone exchange, aulthe
probability that a subseriber will be kept walting a given time.

[Cf A. K. Brlang, Nyt Tideskrift for Math. 20 {1809), p. '3‘34 N

4. A vector < is the resultanl of 2 very Iarge number a gf'ghe:%ontary
veclors, each of given {(small} length, whose du’entmnf; arcy dtr at
random in all dl['ebt.lfjnb in the plave, Show that thel pr‘@bamh-_._y That
the resultant vector ¢ should have a leugth between g .g,nd 74y

/N

rdr _ v \:\,}
o Y,
where ¢ is independent of r v
| This result iz of 1mp0rtance in th@‘ theory of the Brownian wuiion,
and also in cunnsction with the scaﬁt’tnng of B-rays by matter; the
formula is due to Lord Rayleigh. 1 ™

N
"‘

ADDITIO’\TAL REFERERCE

II. R. Hulme, *“ Report on the Statistical Theory of Errors ”, Fonihly
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CHAPTER IX
TIE METHOD OF LEAST SQUARES

'\

106. ¥ntroduction.—In the present chapter we shally be
concerncd with one particular kind of frequency distrilfution,
namely, the distribution of the measures of an. {observed
quantily, when theso measures differ from each ogher’ owing to
accidentsl errors of observation, PN

The deduction of the normal law of freqdehcy given in the
preceding chapter is applicable to this particular distribution ;
" but alterostive deductions have beepy given which depend on
specinl assutnptions regarding error;{ovf " observation, and which
arc in the highest degree interqsﬁfjlg and worthy of study from
the point of view of axiomapjcs.' "We shall therefore now make
a fresh start with the thepzy, :

107. Legendre’s Pginciple—In the mathematical dis-
cussion of the resulfs, of observation, it is required fo derive
from the data thé best or most plausible results which they
are capshle O&aﬁmding, When the quantities which aro
observed dirgdtly are functions of several unknown quantities
which age™Mo be determined, the problem ean generally be
l‘edupf‘@ \as will be seen later) to a formulation such as the

Tt y
It is reguired to find values for a sef of wnknown quanirines
Y, 2 . . . in such a way that a set of giwen equaltons

o+ by ept. . =T
ag by gt . HJE= Ty

aget by tez+. . ="

(called the equations of condition) may be satisfied ns nearly as
(B 311y 200 8

N

2\,

A
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pussible, when the number s of cquations is greafer than the
nuinber of unknowns @, 4, 2 . . . 4, and the equations ere not
stvictly eompaiible with each olher.

Dy saying that the equations are to be satisfied as newrly as
possible we mean that the quantities

[Elufr.laj—kbjy—i-clz—i—. ot

By=tge + by + 62 +. . .+ j5f — By, ~
By=ag b+ . . o+ S —my O\

which we shall call the errors, are to be as small aslp\ossible.
We shall, for the present, assume that the equatigﬁé'r}re equally
trustworthy, e that the quantity, which ig'\ﬁibre precisely
defined later as weight, is the same for eack equation,

In 1806 Legendre* suggested for the SQ\lut10ﬂ of this proljem
a principle which may be thus stated'{ q/ wll possitle sets of
values of @, 9, 2, . . ., the most satisfackory 18 that vilvich venders
the sum of the squares of the e-r@q‘é o mindmum ; that is,

B2+ ]ﬂg;p;". A+ E?
is to be a minimum, A\

For the present we shall simply acecpt this as a convenient
working principle wh\ch serves the intended purpose: later in
the chapter (§§¢ 4\0 115) we shall examine different atternpts
which have bgén made to deduce it from other principles which
have bee{l‘ tegirded as more evident or better fitted to serve
as funda@ehtal axioms.

L X ‘Deduction of the Normal Bquations.—Assuming
€26

dre’s principle, we have now to find the values of @, %,
. . . which make

s

E2+E2+. . .4+ E2

a minimum. If we use the notation [ ] as a symbol of

summation so that, eg., [an]=a2+a2+. . . +a2 [nb]=aD

+ by +. . . ah,, tho sum of g(UATCS 18

Lae)® + [B0]y? + [ee]® + . . .+ 2abloy + Awclpz +. . . — 2on)e
~baly —. . . +[nn]

18;6 0’*”-28556’3 Meéthodes pour la détermination des arbifes des comifes, Paris,
[]
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nknowns i ¥, %, . . . are to be chosen to make this s
q, 50 that the derivatives with respect to =, 7, 2, . . .
nigh, Thus a minimum value Is obtained when the
15 are caleulated from the equations

|’ () + [ably + [wc]z+. . . =[an],
< [rb)e + (B8] + [helz +. . = [ba),

o known as the normal equotions: from them the

‘%Y, % . . . are to be determined by ordinary algebraic
Evidently, in order fo form the normal equation with \

sy one of the unkaowns, we wmuslh multiply cach of the & >

cguulions by the coefficients of the unknown in z;’ns \\'

v add Together all (hese products,

aathod which has been followed was named by Legeqdre

il of Loeast Squares. '\‘

X 3
ivitg the normal equations from the equations of Caidition we
1iles of quarter squarey, for we have not only (8 J°

o] =a®+a2+. . +rcs, '~ )
[ab]=L{{le -+ D) (o + ] fm] F:ZJ]}

check on the computation afs }he normal equations, it
v ealculate the sums \\

url=nf.1+b —H:l':’. . +fl+‘?’61,
p. \
o, _aa—?’;}Jrcb I . 4f+m,
n these to e}(kulate the sums [ec), [b], . . - /o]
ith the sums [4e] . . . [ /] which have a]rcddy been

d, s’nau}@ satisfy the equa.tkons
Tte.’fﬂ-] +[ab]+. . o+ [rzf T+ [a RJ [ac],

TR e B )

rerification of these equations serves to assure ud of the

- of our caleulation of the normal equations. We shall
ater (§§ 117-121) the systematic solution of the normal
s and the controls connected therewith. Ior the
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present we shall regard the golution merely as a mabber of
elementary algebra.

B 1—Find the most plausible values of © ond y from the cquations

4:91x — 590y = — 339-8
2525 — 2Ty= — 476
0-05x 4+ 32-dy= 2625
— 291+ 27-Ty= 15628
— 4 TTe+ Tdy=— 274, I\

We shall first find the normal equalion for = by weSgf Crelles
multiplication table, Mulliplying cach equation by th(}.‘go?zfﬁcimxi. ol @

in i, we have « \J
24110 — 289-Ty= — 1668:4 3
7-40m— Tdy= — 129-Z)
Loy= L3I
84Tz~ 80-6y= — d4d-0
22-7hr —  B-Ty=_\133-1
Adding, we get , :f\\'
62-737 — 8L — 20963, ey

. This is the normal equation for .
We ehall now find the pemmal equation [ov y by use of 2 tabls of
squares, We have N

[20] =312 4 2792 1 2:912 4 4772 = 6273
[ Do B2 4- 2272 + 3242 4 2772 1 142 = 5307.3
[ 45, 0 AL]=54-092 £ 32.452 4. 24792 + 3-877
o\&.} = 1925-73 +1053 4 614-54 4 11-36
= 4604-63
[BPg, b+n)= 28184610
7 [m, »)=210783-36.
Th%eﬁfpre
(VY [ah] =3{4604:63 — 62-73 ~ 5307-3] = ~ 3827
ANy [bn]=£4[B+n, b+n]— (0]~ [nn]} =4(65755-44)= 328779,
) 3 .

87 and fhe novmal equation of ¥ is

\w\ /) — 38275+ 5307-3y = 328777, (2}
From (1) and (2) we find,
T8l y=6-76.

The eompulation of the vormal equations and the check on the
compulaiion may be carried out simultaneonsly as in the following
scheme : the coefficients in the normal equation for » being read from
the row (2, and the coofficients in the normal equation for y from the
row (43 In each iable a row is formed for each of the given equations,
and the columns are added. The sum of the firsl three colwmns should
then De equal to the sum of the last column.
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. B, k. F
- l__
vor | —590 — 3398 - 39389
272 - 27 — 475 — 4748
305 324 2624 204-95
-2:91 277 1529 177:69
— 477 14 — 279 — 3127
A O\
)
A
| [ . an. I %8 1 . \"}
[ S — ___‘~"'s
24-108)  —289-690 | —1668-418 ‘ ~ 19330996/
13084 |~ 7344 | — 120200 | — 1390456
00025 1-620 13125 | NNPETS
B4651 | — B0-607 | — 444039 | — BIFO779
22-7529 |, — 6678 133083 | /1401579
S N
Sum | 62-7800 . — 382.699 | —2096-340.0 ~24163180 | (3)
— N -
E (22 ‘ M ‘ S b,
1 N
| : M\ -
|~ 289-69 3@\&60 2004820 | 2323951
|- T34 -29 128-25 125-196
; ez K1049-76  8505-00 | 9556:38
b 80<60§‘\‘"- 767-29 © 423533 4922:013
‘e - B8P 1:96 —39-06 ; —43778
— —_.A_ —|—_— — = e —_ -
Soue | ng 699 | p3or-s0  aesTTue | BE02agt | ()
I \ i I
~L . !
\ / ., l b, I} 1t i AE
" R A
!
| - 1668418 | 20048-20 | 11546404 | 133843822
- 129-200 128-25 2956-25 2255+300
18125 | 850500 | 6890625 | 77424-373
| — 414-9390 423533 | 2337841 27168801
‘ 133-082 - 39-06 77841 872-433
S !l —2096-340 | 32877-72 | 21078336 | 241564731 ) (%)
- i _ S
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Ex 2—Find the most plavsible values of @ and o from fre eguntions
wt p=2301
Dy ?}'=0'03
T4 By =702
A - oY== 197,

K. 3.—The Sollowing data were vead from o graph showing the probabls
stature of son for glven father's stature, denoied by S Tnehes and K inches

respactively : ~
8 65-7 66-8 87-2 693 69-8 705 769
F 62 64 65 39 70 o e

If 8 and £ are connected by the relution S=a + bF, {E’ets:’mz-f‘;fe By the
Method of Least Squares the most probable values of the con¥ants o and b,
(Edin, Univ. Actnaris] Dploma, 1522}
109. Reduction of the Equations of ondition to the
Linear Form.—In many cases the original\data of the problem
are not immediately expressible as a, setrof linear equations of
condition. Suppose, for example, Webrequire to find the most
plausible values of # and y frorddget of equations

Al gy =, 2(:?6.?)"}~='"";3:52: Con Soln ) =
where /,, . . ., f; are Iin’d‘j;h'functions and wy, . . ., % 8T8
Ineasures derived [romebServation and liable to accidental error.
In this case we fir€fMind, in any way, an approximate pair of
values of & al;g.\gf;say':;, % Putting =+ £ y=7+ 5 we have
K@+ 7+ = 4@ )+ YLty L),

oy

N\ o
apprq{i.mu.te] ¥

AKe equations of condition thus become

N

A i TR A )

Wl ), | Uie ) o
_a; _6 " _—“E_';?}—?? = Uy _fs("ﬁ ?fj):

and these, being linear in (£, 4), can be solved by the process
already deseribed.

R Determine the most Plausible  walues of the rectangular -
ardinates (o, o) of @ point P, glven thal s wmewsured distances Sfrow. the
points {0, 0) {7, 0} (0, 6) are respectively 6-40, 4-17, 538, and thot thess
mesures ave of equael awsight,
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We readily find gr-_n.phically that approximate valnes are - 3, §= 4,
Therefura writing x=24- £, ¥ =4+ #, the equations of condition lecome
WO+ P+ (4 + )2 =640,
HE - ER (44 2 =247,
1h+ ER + (2 — 2l =588,

Se+dn g0 JAl= —0.0031,

/41
R
or _2%{;,4"?;_4-47— J20= ~0.0021,
B N
55_2"? =5.28 _ 90— .. 0.0052 ¢\
NE =5.38 - /29 = - 0.0052, ,;\ ‘

These oyusiions, which are linear in £ and », are now ireated agsordinary
cquations of condition as in § 108.

at & i

.

110, Gaunss’s “Theoria Motus”: the Postﬁlgte of the
Arithmetic Mean.—We now proceed fo cousider the various
attempts that have been made to place“{l’le.\l\lethod of Least
Squares on a logical foundation. \S

The first writer to connect the, method with the mathe-
matical theory of probabﬂitvaaﬁ' (Fauss* His treatment
assumies as a postulate that yhow any number of equally good
direct observations M, B, M™SN. . . of an wnknown magnitude
o are given, the most preduble wulue 45 their arithmetic mean.
Ganss’s deduction he law of error will be given in § 112:
for the presont woshall consider the postulate in itselft

Thixs postulate ‘.iﬁuﬁ. be distinguished from the statement that as the
munber of olgdryations s increased indefinitely, the artthinetic mean
tends Lo tht‘..{’él}i value of z: thiz latter slatement is indeed correct,f
and iz trive'efan infiriiec number of other functions besides the arithmetic
ean :.§ﬁ§ut we cannol infor from it that the arithmetic mean gives the
most, fvaheble rapult when {le number of ohservations is finite.

£\ - .
“\M1 Tecent years the postulate of the arithmetic mean has

\ * Theoria amotus corporum  colestiuny, Hamhurg (1809), § 177
mentions that he had nsed the method from the year 1795 .
t For a eritienl digenssion see P. Dizzatti, <1 fondumenti mat. per lo eritica
dei visultati spevimentali,” Atfi delle R Cniv i Genove per 11 eendenarin
Colombiana, 1892, P 113-384,
1 Tndeed we tuny defing the drue saduc of a physical guantity as the it fo
which the mea of 7 oheereations fends wohen n ERCTEUSER indefinitely

{ranss

§ By _L(I\_I—:c}_-_}n’ where 7 is any odd fanction, when the number of
= -

observations is increased indelinitely.



216 THE CALCULUS OF OBSERVATIONS

been exhibited as a deduction from other axioms of & more
elementary nature* which may be formulated thus:

Asiom L-—The differences between the most probahlo value
and the individual measures do not depend on the position of
the null-point from which they are reckoned.

Awiom, II—The ratio of the most probable value to any
individual measure does not depend on the unit in terms of

which meagures are reckonad. N\

Awiom IIL—The most probable value is indppeuu\ estt of
the order in which the measurements are madc and #0 18 8
symmetric function of the measurcs.

Ariom I'V.—The most probable value, regar&ed ag 8 function
of the individual measures, has one-valued- a)sul continucus first
derivatives with respect to them. ’

From these four axioms we can dehive the postulate of the
arithmetic mean in the following w\&y

Suppese the most probabley Fale is expressed in terms of
the # measures @y, @,, . . %bv the function fimy, 25 « - - @)
Then by the theorem of* the mean value in the differential
calenlus (which by Axiom 1V. ig applicable), we have

flo, ke . r%;\= 30,0, ml[af ] +mL0 . ]

where the sqﬁﬁ}e brackets denote that overy xis to be re placed
by 6z, whete 4 lies between 0 and 1. Now by Axiom I, the

left- ha,m} gide = &/l {2y, Ty, - . ., 2,}: and sinee by the continuity
of' :E.E%\function J the equation

& Sy, By, « ., B =Bf oy g+ - o )

4% must hold in the limit when % is zero, we have

10,0, ..., h=40.
Thus we have 4 )=0

By @y . .., ) = E,s'l[aifJ +.. 0+ for,_[i],
L ey Eh:,b
or, dividing by %,

oy, = a‘/‘jl K
f(clﬁ Bay + + 0y m?‘i)_"'l[a_xl .o ‘+”*""[39;.3; .

r* Cf. (. Schiaparslli, Hewd. Ist, Lombardo, (2) 40 (1907), p. 752, and s,
Nach. 176 (19(?7): D 2053 U. Broggl, I’ Enseignement mathématique, 11 (1909),
P 14; R, 3chimmack, Math. Ann. 68 (1909}, p. 125,
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In this equation make &—0: then each of the quantities o

o,
tends (o 2 value which is independent of the a8, so we can
write S, @, .. . Ln) =¢y+. .+, Where the ¢'s are

independent of nhe /s, By Axiom 1IL, the ¢s must all be
equal, 50

S, 2, oo By =ol ray bl + ),
and since Axiom L gives the equation
Aa+h, o Ry =flo, o w4k, )

we have enf =, S
1 \.

B0 C== s .
K " 4 R

. . 1 K7
Thervefcre  fluy, 2, . 0 ., @) =i(a:1+a:2+. . .+xﬂ)z“'\\

which cxpresses the postulate of the arithmetic Thgaf.

1il, ¥ailure of the Postulate of the Aﬁ‘bﬁmetic Mean.
—For certain types of observations Lhe\ postulate of the
arithmesic mean is not valid: in partﬂélﬂar, for visual photo-
metric insasurements in astronomysty In these the quantity,
of whiclx measures are made, is‘,pl‘ié'ratio of the brightnesses
of the two gtars, Suppose tha,tj:i;ié the true value of the ratio
for the two particular starg) and let L, &, . . ., L, be dillerent
measures of it, The obgeg\rations being supposed to be made
visually, we take as™our starting-point the Weber-Fechner
psycho-physical law'on the sensitiveness of the human refina
to differences of Ji.ght intensity : this asserts that merement of
senszfion is pmportmnal to relative increase of excitation, or

SE= ceu&%ﬂ x 0—;, where 10 measures the sensation of light and

Lis ay th ical measure of its intensity. If E and B, denote
fire, 1111:811311319% of perception corresponding to the brlghtnesses
\and #, we have therefore

K- Fy=c log
The quantities E-F, represent the errors of observation;
denoting them by A,, 4,, . . ., A, we have

]

Alwclog%, A2=010g§?, n—ﬂlogf-

' iger, ; (1593), col, 200,
{p311) Cf. Beeliger, Ast. Nach. 132 (1893 oo
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The A’s appear to obey the normal law of facility: so that the
most probable value of & is that which males
P COLH YL SN F )
a maximum, %.e. which makes
AZ+AEL | L1AR
a minimum ; this gives

BA, 04, A,
Bigy Ty T g, = Q
or log 51+10g by +log Z—”=0 Oy
g Z+. . tlog =0, L
80 ;132 Tﬁ =1, :"}".
1 R\ v
or p={fy . .. L)m SO

This [ormula for determining the most probable value from the
obscrvations was first given by SeideKin 1863.*

Ex—8how that if the probubility i NKe error of @ measureient will
be between @ and @3 dx 4 ell+ |h:c |§.} Vi, where ¢ and b are cosioul,
then the arithmetic meun of two medirements is not us reliable az o single
measurement, and ta fuct s thedeast probable value among all posible
wetghted meons. a T (E. T, Dadd)}

112. Gauss’s “Theoria Motus” Proof of the Normal
Law,—We shall aow" show how, when the postulate of the
arithmetic meffh\ I8 granted, the normal law of error can
be deduced. A\

Suppgge\“@tfémt for the measure of an observed quantity, the
probal;%]{ty‘ of an error between A and A --dA is H{AYdA, 8O
that{$(A) is the relative frequency of error. If ¢ denotes the
1@« quantity to which the nueasuring-instrument is sensitive,

e can suppose that the possible values of any measure proceed
~\\J by steps of amount ¢, and the probability of an error A may be
taken as ¢(A)e.

1t should he noticed that it is here tacitly assumed that the probability
of a cortain deviation depends only on the magnitude of the deviation,

It this assumption is not made, a law of facility much more general
than the normal law may be deduced ¥

* Hinchen, Abh, 9 (1863).

¥ Cf. Poineurd, Calcul, des prob. p, 165, and B, Meidell, Zeifs, fir Motk
Phys. 56 (1908}, p. 77,
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Now suppose that a number s of meagsures M, M, M", . . . are
taken of a guantity # whose true value is . The errors are
A=M—p A'=M ~p ete. The probalility of the error in the
first measurement being M —p is ¢(M ~p)e; the probability
of the error in the sccond measurement being M —p is
HM' - 5)e, and so on. The probability that a sct of measures
(M, 387, A" . ) will ceeur is therefore

. (M - p)p(M ~p)p(M" ) . . . . X
If now we assuime that, before the observations are ma-de,’szl'i...\'
values of » are equally likely to be the true value,* it follows
from Bayes' theorem in Inductive Probability that, w:;liék! the
observations have heen made, the probability of the'\ﬁue value
of s iyirz between p and p +dp is O
=PI - )¢ —p) AT

| 0= - Pp(M I
and Livrofore the most probable }lyP{)t:}?éSiS regarding the true
value 6f « is that 2 has that valueqwhich malkes
G(M - 2)p(M 2 (M’ - 2) .
a Mmaximm, 4.4 that valuesef « for which

s
.\?}'%J..Iog HM -2 =0 {1)

Adopting the. fidstulate of the arithmetic mean, we see
thal equation fmust be equivalent to

N

> 1 v
o\ (M -2)=0.
P d
'I’h\}erefore e log ¢(M — z} =c(M - =},

where ¢ denotes a constant, and therefore
H(M — z) = Ap~#-7,
where A denotes a constant, so
F(A) = Ag-ied?,

* 11 3 not nevessary Lo mwake thig an independent assumption, for it ey !'m
dedueod as 4 consequence of the postulate of the arithmetic mean, which will
be introduced presently.
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Since the sum of the probabilities of all posaible errors is
unity, we have

f " a(A)dA =T

or 1A f T pmteanga
But j : e~y = .
. am i
Writing A for ./{4¢), we have .".}(‘\M
e

which shows that the distribution of the Weusures abonl the
true valne is a normal frequency n’résaf?”{-b@»%i@ﬁ:rb.

113. Gauss’'s “Theoria Motusi\ Discussion of Direct
Measurements of a Single Quantﬂ;y — Assuming, thon, that
in the measure of an obsery; nd \quantity the probability of an
error between A and A + (EA* 1§

“.'} —h2AZ
I —€ A,
where % iz the mﬁdﬁ;lus of precision, we note that the modulus
of preeision aﬁ'o\sa‘s an indication of the weight which must be
attached tg, -.3.11 observation when it is to be combined with
other obger¥dtions. Thus in observations to determine the time,
made w}th the meridian circle, the modulus of precision is less
fo‘\Qs ar very near the pole than for an equatorial star, so in
JLoubining the rosulis of an equatorial with a circumpolar

\ Obf‘ermtlon we should attach more importance o ope than to

” the other,

Suppose now that s measurements are made of a quantity o,

the measures being w;, =, ... @, and the corresponding

measures of precision being #y, 4y, . . ., k. Let p be the true
value of z, g0 the errovs are P-2,P~7, ... Theprobability

of precisely ihis set of errovs is therefore
}E ely—hlgﬁ} e, ]"€“ = he{p—aa)2 . !Eefg—?!as(y—ﬂx)z_

ko T ‘\/“’
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Now the most probable value of « is that value of p which
makes this expression a maximum, ¢.e. it is the value of z
which males :

Rl — a2 BA e — a4 o A —w)?

a minimum, It 1s therefore given by
B —a)+hHp - )+ o+ AHMe—n)=0,
or :;r;:ﬁzml +7h22wg . o+ .Ls‘iz_:-*' (1)
bt o1 hE T
Now we have seen (§ 89) that the modulus of precision
Tl for eny linear functiom @A +a,dp-. .. of the erbors
A, Ay - . . whose moduli of precision arc ky, fy, . . . i€ Biven
by the equation &
) ;2 2 2 ~\
1 af o @, )
T ST v/ (2)
H2 a2 Ap A2

Therefare the modulus of precision of the Qﬁcz‘,\utitv z given by

{1} is /} when \S
11 g ORe
TR~ Shyitdp T AR TR
50 H2f2 4 AEEN, .+ A& (3)

Now let & be the moduleg of precision of certein observa-
tions which are taken as{a:standard for comparison of preciston,

and write \\
h2 N VA2 h 112
7, oL 3 =2 fyg_---f?—, W =—. (4)
! /3-25\ G ! B2 A2
Tho equationgy{) and (3} bocome
&
’\w: - iy + 1y +. .- - W%
N\ . 20, Fat, . . ot
A\ 1072
AN W=+t o ok W

\\Tﬁese equations are evidently analogous to the equations
which determine the position of the centre of gravity of
particles of weights w,, #y, . . ., % placed ab the points
%y @ . . . respectively, W denoting the weight of the
aquivalent body to be placed at the centre of gravity. On
this account w,, w, . . ., w, are called the weights of the
observations , #,, . . ., %, respectively; the weight W of the

result is the sum of the weights of the geparate observations.

N ¢
\NA

N



222 THE CALCULUS OF OBSERVATIONS

Hence we deduce at once the following results :

L. The moan of s equally good ohservations hes s woight s
times that of any one of them.

2. df w denoles the weight of o determination p which s
deduced as the wmost probable value of » from a corein sel of
observations, and if we adjoin o new observaliion x— i of

wetght 1, then the snost probuble value of w18 p+ F_'_—l'_—;, i, {'-.ri
has the weight (w+ 1). A
3. If am obseroation 2 hus the weight w, then on # Siying

£

i by any number X the new value Ax has the aomrﬂr;f_ For

if the probability that :« lies between « and q«v\L is ooy,
\. W

then, denoting Az by , the probability th%t. o hes between 4 and

X

=

g M
ki

. h
dy, 80 the moduluéz\ol’ precision for iz is =

y+dy i3 5 Y

and therefore the weight of )\3’ is ;Lg It follows that:

4. Observulions of da‘j’r’m%& weights can be treated as ohserva-

tioms of wnit weight by ohulfaplym g each eguution of condition
Zn,r .ﬁ?ze sguare oot of Swelght (§ 114).

Al .t ags i o lnear function of dndependent
rmma,tea rrl, ey SN 15 of o wumber 1, defermine fty, My -0 o fy

subject to the eguditfon @yt oo oug=1, 50 that the aweyht of the
Linany ﬁmrtwn, mafy be o masimumn,

1 a2 af ad
From cq}&iu\m (2) and (4) above we see that — =1 ¢ %2 0%,
;\ W oow o, Wy
whereW'e the weight of the linear function aud Wy, Wy, « . 4y Wy aTe the
we»g\ ¥ uf the mdependmt estimates.  Therefore we mmt liave
o\ o — e, 1y 1, Jr;gz +r_t8a.'.a,.
:..\:. wy wy W,
RS Iy
\ \ subject to O=da)+day+. . .+ da,
and therefore "2 % @ fapt. . ta,
Wy Wy Wy Witaw, ., 4y
fer_:
20 =— L

T Wb, .ty
Thus the esiimate for » which hag tho greatest weight is
B e g I P
Wy +1-' F. [— Uy

"Fhis agrees with the value of @ given by the Method of Least Squares,
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. (Gauss’s “Theoria Motus” Discussion of Indirect
rations.—Now suppose that a set of unknown quantities

. are to be determined from s measures a, i, . . ., %,
knowns being connected with the measured quantities
squations of condition

[{!r #+b f,r+cz+ ot fii=ng,

la& L+b”?:+o?z+ St =,

the coefficients o, b, . . ., &g by, . . . are supposed to be
accurately, while the measures are liable to accidental
of obgervation. Suppose that for the observed quantity
wmeasure of precigion is A, for the observed quantity »,
asure of precigion is #,, ete.; then the probability of zm\

. . Rae _npe
 in 7y 15 fﬁ A% where ¢, is the smallest quangt'y 1o
1 - 7

the measuring-instrument of n, is sensitive,ge that the
res may be supposed to proceed by steps ¢f)dmount e
s in § 113, the probability of the concusience of errors
. Is N

h 1€1 6_1,12312 }!_2_2 _]!22_323 N . )
NES W ’
¢ most probable values of 2{7 z . ., t are those which
this cxpression a mamm}lﬁ},,\when

Ay=apm+b WG -H:“z SR R
Ay = o4t Jr,\&y+rz+ . fof — g, ele.
- values {2 gy, . ., &) must therefore be determined

he condibing}hat-

i >) :}612& BLREAZ . L+ RPAT
& Al \ﬁlmum If wy, . . ., 20 BTO the weights of the
ations (which are prupnrtlona,l to the squares of the
| of precision), we must therefore have

wy AR AR+ L 102
mum: that ig, in the notation of § 108,

24 [wbbly? + [weele? +. .+ 2[wabley+. -
— mwanp—. . .+ [2enn]

ol
7%}

¢\

AN
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wust be a minimum, and therefore the unknowns o, v, 2, . .
must be determined from the egquations

J Lo+ [wably + [wec]e+. . . =[wan],
L[%ab]w + [y 4 Twbele + . . . = [wln],

These are the mormal equations.

It is evident that an observation of weight o enfers into
equations exactly as if it were w separate observations sach of
weight unity. The best practical method of accoptbifg for
weight is, however, to propare the equations of goprdilion by
multiplying each equation throughout by thewaquare noot of
its weight: the resulting equations then hayé~§;heir weights all
equal, as we have seen (§ 113), ."‘.,\\

115. Laplace’s Proof and Gauss’s ¥ Theoria Combina-
tionis ¥ Proof—The Method of Le’a,s,b\\gquares was established
in an entirely different ma,nner;b}i Laplace in 1811,% and by
(3auss (who to a vonsiderable exj;e‘nt adopted Laplace’s ideas) in
1821-23.+ o

The common principlgz'x.)f these and various modern proofs
which have heen develfqtaed from them may be stated thus:

Suppose that for's linear expressions

x\ ap+bhy ez, L.

\u mL s
SR &

\ y gty rege, |
\vg\h}éé respectively the independent estimates ny, #,, - . ., ®s
Berived from observation, the number s being supposed greater
i }:’t\lan the number of unknowns #, ¢, 2, . .
o N For the quantity
\ Meg+dytez+. .. | RN RN TR R E A
tAdez+byvez. . ) ... (A)

’:* Thém'a:g anal. des prob. Livre I1, chap, iv. (1812), following a memoir of 1811,
T Theoria combinationds observationyum erroribus minimis obnowies, Werke,

Ba;n;i V. p. 1. A Trench translation by J. Bertrand was published at Parls
in 18355,

P

) Ga‘uss in aletter to Bessel of February 28, 1839, admitted that he had changed
his views regarding the establishment of the Method of Leagt quares zince the
publication of his Theoris Motus in 1809, having ahandonad the ¢ metaphyaical”
basis on which the Method was founded i that work. )



TITE METHOD OF LEAST SQUARES 225

we have therefore the estimate
At ARyt o+ A

Supposs the A's are chosen so thab in ihe expression (A) the
resultant eoefficient of o is unity and the resultant coefficients
of 9,2, . . . BI8 all zero, 80 thai-

Ayt L AT

ia an estinate of z The problem is to lay down such further
conditions for the A’s as will secure that this is the best possibie

estimate for @ Now this can be done if we take as a funda{ )\’

mental jdea the notion of the wesght of an estimate, Let 2 ‘he
an cetimate, derived from observation, of the wvalue Qﬁ.'jgoiﬁe
quantity: then we shall suppose that with this esl:ﬁnaﬁe is
associated a number w which will be called it dight, We
shall furiher establish (in various ways according g the method
of Laplace or of Gauss or of more modern, ;;yﬁ‘nérs is followed)
that if 42, 40y, . . ., ws ar6 the weights ofPhe estimates ny, 7,
. . 7, Tor the linear expressions (1) j;héh the weight of the
estimate im +. . . + Ag, for the e‘xpi’:assion (A) is W, where
1 a2 A2y A
W e
Finally, we shall defin€ the hest possible estimate for = to be
that whose weight is g{%a.test. rith these presuppositions the
best estimate for # is\ .
W B Ayt et Aglss (B)
where the A’ s@js\ié%y the equations
;\x}. gty + Mgftg b o - Alte= 13
) ‘.\\W' —‘\1?)1 + ‘)ng)2 - . Lt Ksba =0 l {C}
! Moy F Ay oo A= OJ’
N N -
\ék‘.o we Lave
)Llﬂ.zﬁ_f. .AZ_d)L;Z_i__ . ‘+.’\_sf.&’=0_
10, s

[ZX

1
These equations give at once

A ' "
j- Ly e+ @by e =0
'?A’/'l

Ay
l‘-?f_: + puits + ;L*E?R-I-;L”Gg-ln ..=0,
]
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or Ayt sty + pl by + e L L 0]
e (D)
Ap+ progrg + gl + plwe, . L =0 J
Substituting for the Xs from (1) in (R) and (C), we have
0=+ plwan] + @ lwebn] + pTacen] +. . |
O0=1+plwaa] wTwba] + p"Tiwea] +. . .

U= plwab] + W|wbb] + ' Tweb] +. . . i

0= plwne] + wlecke] + p'Tevee] +. ., . N\

ete. K¢ *\
Eliminating the x’s from these equations, we have o\

O=f2  [wen] [whn]. .. [n] ”’}““
1 [wan]  [wba] . . . [l 3

- :'"‘t\
0 [waf]  [whf] . S Forf] |

o \0;
[wan]  [wbn] . . .\lsrr/n]
[wab}  [wdh) 7 [ h)
[wac] [?.UZ){{]:,,:. - ]

[waf] “T?";’J}_I o [y l

B=— A —

Podd}  [wha] . . . Paeyid]
,{ﬂ,hb} faobh] .. [/ ]
K Mwae]  [wbe] . o L]

or

» N/

Y3
N\

N | 2 B B
As thi®us the value of » obtained from the ordinary normal
e_'uétja‘;ﬁs of the Method of Lcast Squares, we see that the
‘p;}dellb investigation leads to the establishment of that
Method. :

“\™ 116, The Weight of a Linear Function, Tt remains to
show how the equation

1 a2 a2 A2
— [

W o 0, o,

has been ohtained by the different writers who have furnished

Proofs of this type, Laplace obtained it by iuvestigating the
value of a linear sum of errorg

T P Y

(E)
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when eacli of the errors has a definite law of facility, say ihe
probability thab the #th error lies hetween ¢ and e.+de,. i8
pfe, e, This investigation we have given in a form some-
what Jifferent to Laplace’s, in § 86 : as is there shown, it leads
to the result that il
{ 22 () de
40
is demoted by % then the probability that the linear sum \

A+ o -+ A lies between -7 and +7 15, when s is large and, O\

N
N

under ceviain conditions,

1 : wd_ 4
e . O
Ty B U 242

(‘}'."‘2:). )'rv ) o ’ ”‘\\.

and whatever  may be, this iy & maximum when
Ao+ AR+ L AR \\
is a minimum. Defining the weights as inifg\gely proportional
to 2% ... k2 we obfain the equatiod (E). It will be
noticed that Taplace’s method req.pii"bs that the number of
observations should be very largc,::'df glse that the elementary
errors should follow the normalaw of facility.
Ganss, on the other hand, 'writing
{el =@ﬂ.‘-}+ by+. . My
N :

. .

Se g by, . =Ny
obtained accura{e‘lﬁr g
gafln, +. . A+ (et et reea);

wheve a.g{\i\)ewfore the Ms are multipliers which satisfy the

equa.tgj@ﬁ’gi
& My e A=,
N/ It o A=0,

letc.,
and therefore reduce the coefficient of # to unity and the
eoeflicients of y, 2, . . . to zero. He then assnmed thab the
importance of the error A, +. . - + hey b6 the detriment of
which it is the eanse, may be represented ny (Ae +- - - /\SE,J_E-
That is, (e, +. . .+ Ae,)? is a funchion whose menn value 18
to be made & minimum. Thus instead of securing that the
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probability of a zero érror ig to be a maximum, as he did in
the Zheorin Motus prool, Gauss now endeavoured to diminish for
each unknown yuantity, the probable value of the squure of the
error committed. Now

(Mg ke o AE)2 =30 % 7+ 250

The mean value of €t is

2€1€0

) '\
j by () de = .2, .
- AN
and the wean value of ey is zero, S

N

Hence the quantity to be made a minimum I3,
AEE . AR m'\('

as in Laplace’s proof: and it appears fhom” Gausy's proof that
this formula can be obtained by malkihg minimum the mean
square of error (which is the averagfot the true square of error
for an infinite number of cases) PoMin other words she Method
of Least Squares gives a res ulfguch that, if the whole system of
observations werc repeated\ah infinite number of times, the
avergge value of the St_l&eifé of the error would be a minimum.
The postulate of the. arithmetic mean, on which the Zhesriz
Motus proof was, ..}{s‘sed, is not needed here, Gauss himself
decidedly prefe{@d’this proof fo his earlier treatment.*

Some moflern’ writers have derived the equation {E) directly
from asst}tll’ptions regarding weight, which is taken as a funda-
mental Rgtion, and have thereby succeeded in establishing the
Me?h@’d of Least Squares without any appeal to the ordinary
théaries of probability of error. This tay be done in the

sdollowing way :

Let » be an ostimated value of 1 quantity #: then we shall
agsociate with this estimate g number « which will be called
its weight, and swe shall assume as an wetom that the weight of
the estimate An of the value of Az (where A is any number) s
of the form w/{A), where J{A) 1s some function of A. If  is any
number, the weight of the estimate phn of the value of pAs is

* Of. letter of Ganss to Bchumacher, November 25, 1844, in Gausa, Herke
8, p. 147, -

T Cf Bernstein and Baer, Math. dun. 78 {1913}, p. 284,



THE METHOD OF LEAST SQUARLES 229

therefore 257(A)/p) + but it is also f{Ap); so the function j/ must
gatisly the equation
‘f(‘kf"‘) =f()h\'f )

whence we have JIA) = AR,
where % is some number. Thus ¢f the weight oj the estimate
w for 0 bo w, the weight of the estimale An for Az 13
wAk, (1}
Next suppose an estimate 7 for » has the weight p and an
independent estimate . for y has the weight ¢, and let the € \

weight of the estimate L+ for z+y be O
We shall assume as an ariom that ¢ is given by an eq\m’tgon

of the furin D
$0) = 92) + 400, &7 o
this being in fact the definition of mdepande\ﬁqe of the two
estimabes, Since the estimate M for Mz haﬁ e weight pif
etic., we have

M) = oV + »ff(qﬁui‘} )

We Tave therefore to find the na’eﬁ’re of the function y for

which egaation (3) Is a consequencé of equation (2), whatever

A may bo. Regarding = as & function of p and g, we have by
differentiafing (2) with resReet to p

\\f v
and by mﬁerentla@nv (3)
T ,\fn;a =¥/ (M)
\O
Thus {\ (;ML) = (-, )t—L},
R\ v v
@ﬁmilurly the latter fractmn is equal to
¥ig)
Therefore _“r‘_r(;%%;) is independent of p, and therefore since
0
pX* is symmetrical with respect to p and A¥, we must have
¢
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a constant independent of » and A% The funetion ' therefore
satisfies the functional equation

9 ) = cg@)glyh
which shows that y'(x) is a mere power of # multiplicd by a
constant, and therefore y(x) is also a power of » multiplied hy
a constant. This constant has no influence on equation (2)
and we can therefore write without loss of generality

)=, Qw)

Next let 2, and n, be two independent estimates of Y each
of weight 1. Then by (1), }n, and in, are two iflitnendent
estimates of L, each of weight 2—]}c: and thgrp'féi‘e by {2) and
(4), 4n, + In, is an estimate of » of weight,?*,}w\here

We shall now assume as an gm’:f,%n that if two indepsndent
estimates of the same quantit\y:afe each of unit weight, their
arithmetic mean is an estigﬁjad;e of the same guantity having
the weight 2. We have ghercfore » ~ 2, and consequentiy
g 1

= T=1
B \C\ (h+ Lyy=1. (5)
Oomb1n1:ng 1}, (2), (4), (5) we see that if n, is an estimate
of @ witloweight wy, and if #, is an independent estimate of
%y WlP \Welght w,, then A, + An, is an estimate of Ay + Agity
withbke weight », where
,'\'\\w =AY A (6)

AN N OW SUppose that n,, n,, . . ., n, are cstimates of By gy o v oy T
N\~ rospectively, each of weight 1. Then by repeated applications
of (6), we see that my<my+. . .4+n, is an estimate of

T3+ &+ . . with the weight » where

74\

~

or

=110, L 4+ 17=s,

80 r=g,

Now we shall wssume 45 an awiom that when the weights of
iy« « ., T aT€ each unity, the weight of ny+m,+, , .+ m, 18
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1. . .
of the order < e the product of this weight and ¢ is always
finite and bounded as s—»c . Therefore

1
T=—lory=-1 7
y / {7}

Ty (8) repeated and (7), we see that A A, Ty o Ny 076
eSHANGIEs Of Wy Mgy« - o Ty respectively, of weifhts wy, Wy, - « -, We
them Aypy + Mg+ o o+ A s am estimals 0f Aty + Agty F o« o+ Ags
with the weight W, where ‘

2 2
1A A8 A ¢ ’\:\ ’

e EERSR
Wy Wy ¢

This is equafion (E}, from which, as we have seep.,’}.tffé
Method of Least Squares may be derived. O\ 3
117. Zolution of the Normal Equations.—We-shall now
discuss the solution of the normal equations, whibh “are equal
in mumber to the number = of unknowns, apd which we shall
write \ “
ttg B+l .- <+ i =6y,
[({.21{1,’ +ttgglf e - .:I-,{{gm_‘f=62,

a\

"\

o o gl + 2% - F il = Cons
where By = Uy -

Tet T denote the determinant [ay,, and let Ay, denote the co-
factor of ,, in D. ‘Bien’the solution of the above equations
is known to be O\ '

.Dt{z'%:&ncl A
tJll“);Fj Ay +Apfy boo ot Anln
s
'\\ lDt =Ar0+ Aot o o F AmCone
The,gféblem is thercfore to caleulate D and its minors A
@J\bﬁ‘ect this, by the repeated application of the theorem of
$38, we reduce 1) to a determinant of lower order: the process
may econveniently be stopped when the reduced determinant is
of the 4th order, so that we have, say,
D=\ ‘ SRS WO SO
b,

itan b‘ﬂlg?lg Z]"“QM ?]?ilg?'ld.

2 &

‘ bi’ilg‘ﬂq E)msﬂ_z bmaﬂg b"“s‘“i

} b‘a'rl-m-l by, sm2 Z)'.'-M'Ns b""éﬂl !

N
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- where M denotes an external factor, and each element b, has

been derived from an original clement a,, by a suceession of
processes of the kind described in § 38.

Now if &, is one of these 16 surviving elemsats, the
minor Ay, of I may be reduced, by preeisely the same trans-
formations as I, to the product of M and & determinant of the
3rd order: indeed this reduced form of A, may hs derived

from the above reduced form of D by merely forming thedo-

factor of by in it. Thus a single reduction-process 1‘1%:‘ﬂ\ishes
not only D, but also 16 of the minors 4 . K

Taking for example the case where we have 6 unknown4o that D
is of the 6th order, we may reduce D by taking gy and{IsNin sucecssion
as the pivotal clements, and shall thereby oblain the ,mé’g.ors

Agg Ay Al A% Ay AR AK A, Aﬁ%}\i,;s,
these with an asterisl being obtained twico, y
We can next reduce D independently Hw taking thyy ATl B in

succession as the pivotal elements, and shy ihireby obiain the minors

Ay dig Ay Ay Ao A Mg BN Ay A Ay Ay 2,

so that altogether of the minors | \J
Ay Apy Aga’%&n A Agg
Fgp Sy gy Aps Ay
Ay Bgg Agy Ay
~ T at Aap Agg

\ 0a TTEh

“‘ea

ad
N <

s \J
" we obtain fourt-n&%\o’f' them onee, three of them twice, and four threa
14

times, These uliiple determinations serve as checke to the calcalaiions.

Bx. 1.—Towlve the cquations
¢/

A\ w4 By — 2z — %= 05,
(N 3n+dy—Dbat w— Sv— Bed,

OV =22 -5y + 32— Zut = — O,

\.\\“’ ¥— 224 6u+3v= T-a,

) =953y L 224 Byt dv= a3,
e first form: the determinans -
\"4 =i 1 3 -2 0 -2
3 1 -5 i -3

-2 -5 3 -~z 2

0 1 - 5 3

-2 -3 2 3 4

1

and taking @y 45 the pivotal elenient, we have at once
D=D"::) -5 1 I

! 3= —125
Pl -1 -2 a2

“y
>

1 ]
| 3 -2 3 ¢
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We uow (ud the co-factors of the elements ay of D, corresponding

to the wrviving elements in D' For example Ay, the co-factor of
— 5 in D, is evidently (§ 38) the co-factor of by=1in D', so

Bpgg=—'1 -2 -—2,=3
1 b 3
|2 3 0y
In this way we find the values
An,= 3 Ap=-11 A= 18
Ag= 18 A= 9 A= — 4 A
Agy= 9 Ag= 17 Ay =~ 27
Agp=— 4 A= —27 A= 37 :;\t\'
Now selueting oy, as pivotal element, we form the determinant ;\"\ ”
P=T¥=1] 1 3 —2  —2]=-25 A 3
‘ 4 3 -7 -4l AN 3
L —15 —19 23 R

| -11 —15 17 13|

and then delermine the co-factors of the elements g{&'mf D, corresponding
1o 6y, of " For ezample, ¢*4

AN,
Ap=1 3 -7 -=¥l=52
“19 ez Q8!
| —15 1748 13]
In this way we find the values N
Ay=— 1, Ay= Y, Ap=- 3 An=18
A= 52, A_JZ::“—'\— 1, Als-e 19, A15= 18,

Now taking a,, a8 piﬁlﬁ\al clement in D we obtain the remaining
\"

co-factors
:" _A_mz:—l, 31;=‘*3.

The solution;ﬁf the above equations can be wriiten down at once:
»QZE: OrB Ay, + 54y — 504y + T5Ay + 3345
o) =260 54— 950—22:54594
or  (S-Ehr= - 375, whence z=15.
AV Dy 0B By, — B0Ae T A 33A
~\) — — 054 70-2 — 150 — 82+5 + 528
\ 7 — 20y =250; whenee y= — 1'0.
Dom 0585+ B4 A gy — 50A+ TBAR+ 338
= 05 4 16-2 — 900 + 675~ 1532
or ~Zhe=—-100; - whenoe z= 04,
D= 0-5A 4+ 5-4hy, - 5-08gy + 7584+ 334
— — 15— 594450+ 1275 - 89-1
or — 2Hu= —~ 675} whence u=2-7.
Dy 0-5A - 544, = 0-0Ag + Feihgg+ 33 A5
=9-0 + 86-4 +20-0 — 2025 & 122-1
or — 259 =35-0; whente v = — 14

£

o
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Eiw. 2~Solve the equations
Bu—By+Ts 4+ w+2v= 3568,

— dz -l 2y + 2u+ Bw = 60-5,
T4+ 2 + uw— @ = 1670,
2y 2+ w—Dr== — T4,
2o+ — 2 —fHutd v=— T1.2,

118. Final Contrel of the Calculations.—When tho most
plausible values =, 7, . . ., 4, have been found by solution of

the normal equations, we can caleulate the residuals I
defined by the equations O\
A R T fulwl AN
. . . . . L. (1)

ool
N

Ul F Dfo b o ok fiy = = T

These residuals v are (as will appear ]at.er}fequired in order
to determine the mean error of our rdshlts. Meanwhile we
shall show how they may be nged to »furnish a check on the
working hitherto, S\

We have : o\

[#] =ty « 4t~ 0 N (it 4 fify )
= el + W)y +. . . 31—:?[&56];410@/0 o= 2anloy — .o [20]
=wllzale, o+ [ — [an]) + wolladley+. oo+ [ Y, = [Pa]}
5 = [an]ey - [bnly,—. . .- [/t + [#n],
and by virtue of £hé normal equations this expression reduces
to the last set’of\terms, so we have
[#]= - [anle, ~ [Baly,—. . .~ [/n]t, + [na].

This edvation way be used as a control for checking the
aceurddy of the whole set of computations, [+%] being computed
dixgetly by squaring and adding the residuals. We have

WDroviously (§§ 108, 117) deseribed controls on the formation
N \of the normal equations and on the caleulation of the deter-
\m y "~ minants involved in their solution,

119. Gamss's Method of Solution of the Normal Bquations.—

The methor of solving normal equations given hy Gauss * differs, in form

af any rate, from the duterminantal method deseribed in § 117, Tt
may be deseribed thous

From the normgl equation in @, we find 2 in lerms of the other
varigbles and substifute this valie in the remaining normal egnations:

¥ Theords Combinaiionis, Supplementum.  The inothod is fully deseribad by
Encke, Berlin, astronomische Jihrtush, {(1885), pp. 267, 272, and {1838), p. 263.
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this gives we the “first  irausformed system,” whiel fuvolves only
B 8« - o osnd s (like the original mysten) axisynnnetric,

From ibe fiest equation of the firsh transformed aystem (viz tlat
aquation G was derived from the normal equotion in ) we find
y in terms of 2 .. 4 4 and substitute this value in the remaining
equations of the [irst transformed system : this gives us the “second
tramslormd svetem,” which invelves only 2 .. ., ¢ and iz also axi-
symmetria.  Proceeding in thiz way we obtain at last an equation which
involves calr £ and from which ¢ can thercfore be determined : wo then
detormine ai1 the other unknowns, sach from the equation which was

used for its climination.
Thus if the original normal eguations are N
az -+ hy +gr=1, N
hos 4 by + 2 =, W
. ")
g+ fy + o =0, <N

{he set of eguaiions which are msed In Gaus's method'\ffm"tlm {inal
determination of », 4, # arc O

i+ by b e = \
a h a ¢, _|e 351\ Y
!__h- b Y| p f|"'_|.? LS o

a hoH | b N
| b [ e=ih PAN
g f el iaET

Now if T denote the quadratic feijlﬁi wlhich represents the sum of the

™

gquares of the ervors, namely AN

em a4 by® e o :_,)ﬁyz\q_ Q_g;gg - Qfeap — 2 — 2oy — e+ U,

it ig knewn thai T ean bga:\é’x}rcss.ed as a gum of squares in the form

N’
1 . N1 e B la gl e EYR
T=gbosigto—BRES {‘h- 29T 17T mly
SN :
A\ hoh
1',\'": o hogi @ ?’ i"'l : 1 o h g f
Tl r.i.tb-“h- yi]ifl }f'z—‘? }q::” 4 by Bobof "”l
iRrh o ot gL s gl e S
N g f ¢l g f ¢ 16 monowl

P
: 41~i\'y“h sitows at onee that the cquations {1 must necossurily represent
\tht-.‘. couditions that T is to be a minimum, and shows also that Gausss
methed of solulion is substantially equivalent to the reduction of a
quadratic form to a s of squares.

B, 1—1T% solve the eguations

#+ By — 20— o= 05 (1)
A+ dy— Bz + w—Br= [FTEN (2
— T — Gy 4+ 3 — B4 Be= - GAIA (3}
af = 2i -k 5u 4 3= 70, (4}

— By By 4 Ya+ 3wt de= B3 (a)

\A

N
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Eliminativg z from equations (1) and (2), we have

18y Nl-en g1 o0p f1e2) (104
3 ¥ Tisos® s 1%V |3_3]""|3 51
— B tat+u+ 3v =39, (6)

and similacly, by combining (1) with (3), (4}, (5) in sucecssion, wo obfain
the equations

#— w—2u-8v= - 40, (7)
y—2z+hud Be= T-5, "\(8)
By — 22+ 3u = 4.3 {9)
Now climinating % from (6) and (7}, we have \' \“.\
-5 1 -5 1' -8 3| [-5A39
1-1"F] 12 ¥ 1o2|7=] 0!
or 4z 4 Hu 4 To=16-1, \\ (10)
and similarly, combining (8) with (8) and (.‘L)\in succcssion, we obtain
N .
9 — 261 — 18v& 2 41+4, (1
Ta— 18u - o= - 33-2, (12)
Continming this process of elimination, the following equations are
obtained : N
185w+ 1359 = 310-5, (13)
_ MB5u+ 850=1245-5, {14)

.

and finally, from (34} (13), (10), (6), {1), we detcrmine the results
o= — 14, %:2-‘2{#& 04, y= —1-0, and o= 1-5,

B, 2.—50%e by Gouss's methad the equotions

PN Sr— By Ta4+ uwlfv== 3558,

:.\"..’ ~3z+ 2y + 29+ 2o = 60-5,

N\ Tt 224+ - v= 1670,

,\\w’ Y+ 54 w—lfe=— 75,

R 2+ — s—Bud v=— 7T1.2,
AN

~O 120. The “Method of Equal Coefficients » for the Solution
N/ of Linear Equations.*—In a method of performing the
elimination, which is known as the Method of Egual Coefficients,

the two first equations arc reduced to two equations between

each of the two first unknowns and the remaining unknowns;

then these two with the third equation of the original system

are reduced to three equations between eweh of the three first

* B. I Clasen, Brux, Soc. Se. 12 (1888), A 50-59, B3 251-281,
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poknowns and the remaining unknowns, and so on. The
advantage of this method is that the same coefficients oecur
repeatedly, the elimination being thereby greatly facilitated.
The meshoil involves cerfain divisions, which, however, should
always give exact quotients awithowt rematnders, thereby con-
gtituting » control of the accuracy of the computation,

Thus lct the equations be

@+ by e+ dye + v =Jy,

[y

i 1
g + by + % T ot + 657 = Toy 1,1
g -+ byl + Og% + Ayt + e =g, A
age+bytegt fifliu 4 o0 =1y, A N
e+ by + 62 + dsth + 60 =g N1,
Iiiminating = between 1, and 1,, we have A\
Lgby g gty 2 | aytly |2+ | ye to=| cr,’lfg'[, 2,

and climiaating y between 1, and 2, by @n}ung the sum of
— |k, 1, and 8,2, and dividing by 4, we have

~tagby o+ | 5102]z+i51dzl:%;!71 E"132"”=| byl 2

Now multiplying 2, by ¢z 2, {)‘yl by 1, by |8, ] and adding,
we have S
fotybyta |2+ r§16;d3 [0+ | @, byes | 2= 10,0051 3,
Eliminating 2 between 2, and 3, by forming the combination
P bota ] 4y — | @45, [33? And dividing by — | a.b,], Wwe have
AN/
7 tilogs) o+ g0y |+ gty | =1 Oyt f3l 3,
\V .
and eliminating z between 2, and 3; by forming the combination
| byoal@y - | Byt | 3, and dividing by - |azd, | we have
Z"\; N o

) Jargbots " +1 Dytytly [+ Brogy | v =] bitefsl h

Now form the combination — a3, +58:— 43+ | etybyts | s
We geb

FARA R tryDytigty | 0= | abtafal 4
Eliminating » between this equation and 3, by forming
b, | 3, - a,body | 4, and dividing by -] D], WO have

b, 2 | ayhydae, | 0= 0d 33 4
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and gimilarly
| ybotatly | 37 + | yegdan, |0 = | ety £, |, 4,
— e bosgd, |+ byooflae, |9 ="0eydo 1y 4,
Now form the combination a4, — 5.4, + ¢,4; — .4 + e, Dy |1
We get
| etaPotailyes |0 o= | hoegd, 7 5,

Bliminating » between 5; and 4, by forming |oybyyde |4,
— | et;Botqt, | B, and dividing by | e;byeyd, |, we have

N ¢
AN
—lagbaoytlyes | = aybyos0, 751, N\ N 5,
. . & ’\.‘l
and similarly ~\
[tbyeadies 15 =| taludae /5 o %
— | albz{;ad435 ' iy = | 4y rrﬁ-d:%ﬂd,)a.;& & 52
labotylyes | 7= byeydaaplit 5
The solution is thus completed. :t\\,
&
Ex. 1,—To solve the eguntions C’,\
n4 By — 2z W - Zv= 05, 11
ax 4 Ay 7,5?-'4- w—3v= i, 1,
— P — 51}{1:3* —%u 4 2v= — 50, 1,
‘:‘ﬂ; — 23+ 5u4Br= T 1,

- By + 2+ dutdv= 33, 15
Eliminating @@’9\1 eguations 1; and I, we have

=Sy tetu+t3e=—39, N

N\

and elimjrm;‘tiﬁg ¥ hetween 1, and 2, by forming ithe sum of 5.1, anil
3.2,, we\ghiain
."\‘:. 3 Su— Tz B —v=14-2, 2
,\{:\'\fhiuh the covtlielent, of = is ninue the coetficient of ¥ in 2,
AN Now mudiiply 2, by — 2, 2, by 8, 1y by —5, and add te form the
,,\n{' equation
'"\‘\./ Az + 9w+ To=16-1, 33
in whish there are no terms in « and 4,

Fliminating = between 3, and (22 by forming the combination
(4.2, - 3, we obtain the equation

—~dy—udv=—01, 39

in which the coeficient of 4 iz minns the coefficient of ¢ in 3y

Now eliminnting # helween 2; amd 3, by forming the combination
%-(4.21—1- 7.85), we find

454 15u 4 90— 359, 3
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in wlhich cauation the coefficient, of » differs only in sign

coofficieni: of # in By Now form the swn 354 2.34-- 4.1,

ATu+3Te= 621,
and eliminate « between this equation and 3y
— 3Tz —dv=—92
The remaining equations of the process are

37y — 16v= — 146,
— BTz 4 180 = - BHY,

— 5= 350,
2Hu= G673,
—8@az= 10-0,
28y = — 25-0,

—95z= — aT-a.

The requived solution i therefore

A

K7
AN

pieles, y=-10, #=04, w=25%=-14

¢’ N

Ea, 2 Snlee by the above method the egy@tﬁ'aﬁs

Sa— 3w+ Tzt @Lg—f—‘ﬂfi‘ = 3568,

-3+ 2y -+ fi’gf—i— Z =

T+ a4 Tw— v= 1670,

o 2y L Bt w—bu=-

2 ¢ i».-z g—bud v=— Tl
&

239
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4

121, iiamparijso’;{.nf the Three Methods of solving Normal

Equations.—GOuiparing the three methods
the, Ppterminantal method (§ 117),

given

which have been
Gauss’s method

(§ 119), sedthe method of Equal Coefticients (§ 120)—we may
say th&‘-i‘: the Determinantal method is on the whole the best for
1;1{& "@éluti(}n of a sef of normal equations. Tt should be observed,
\1{0%“9"91‘, that the superiority of the TDeterminantal method
depends on the circumstance that a set of normal equations

is always axisymmetric (i.. the coefficient of ¥ in the no
equation for # is equal to the coeffictent of #

rmal
in the normal

equation for ¢), For a sel of linear equations which is not
axisymmetrie, the Determinantal methed i inferior to the

nethod of Gauss.

122, The Weight of the Unknowns—We shall now
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investigate the weights of the determinations of the unknowns
%4, . . .t Denote the most probable values of il unknowns
by @, ¥, - - » iy We have in the notation of § 117

D =A e+ A 132 -k JA-JH-].G"HH

11

where D and the minor A,, depend only on tho accurately-

known coefficients @, b, . . . of the equations of sondition ,Qld
where \

£ \'
\ 2
e =’U-‘1G’1’?‘L SR RN S X AN
= Wybyny A wgbany .. L wbin, | N
N
'\’\.“
80 Dy = £ugm, + Epogng + . . 2K i, L
where x:\\.,
L |
Lfbl 6 w1 b

H=Am + A0+, . =M

" \ (Zm 'f{-22 fz’.-23 e L \
N i
Vg ey flan o .4 U3y |

Tt
Dyl P2 Eang « o« s 5

&= ’rszfré e fy | ete
m&\aﬂ (423 N .

a‘ml LS RO S

S

By\glvmg to my, . . ., %, the particular values a,, . . ., dy 10
ich case we should evidently have a,=1, we derive from
\equamons (1) the result

D ={éwa), . (2)
and similarly by giving to n;, . . ., n, the values &, . . ., b, 10
which ease w, =0, we have '

0 =[fub). (3)

Let 2, be the weight of the determination of #, Then gince

%, is given by equation (1), we have by the formula for the
weight of & linear function of Py o Ty,
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D2

—= g B L &
ULy .
=y iy o wb A | [ ety Waloby + o - Wy fy [ o . -
thyy  fhgy eee Oma ] 3 fly Oy ... oy
I! {3 s e e s hm el B2 o v o pm
+ | Wbt w&ésbs e wsSsj; l
(g gy v fom O
. . . . 1A
gy w2 o Gmm ’f\\“,g
O
4w O
= [} [20B€] o o . [wfE] | R
gL i \
(g, llgg o n Oog | A\ 3
it Ny
» - . - \:"‘\\\~
ipt  fmg o 0 Bmm \/
=| 1L 0 ... 0 |bycquations (2)and (3N
Chyy flog o o ot ~Nx\\.
il Tz« » P ,‘.' 7
) D2 X
Therefore =DAJ
We _a
or XAy
AT D
2\

and simiiszly

X/ ) .

These formu, ’@:\give the weights of the determination of
%4, . . .; Geyeare due fo Ganss.*

Tt is & captideration in favour of the determinantal method

of solution’ of the normal equations that as D, Ay, Agy - - -

dlduiated 1 furnishes
argeghldulated in order to find 2, 7,2, - . - the method f

th\e\“)feight-a without any fresh caleculation. .
Now lab ¢ denote the mean error to be foared in an ohsery 1.‘:;
tion of unik welght, and let €, denote the mean error to

2
€

] . . . _ = va
feared in the determination of »: then gince %= o we ha

G

* Pheorin Combingtionds, § 2L 5
(p3i1)
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We shall see later (§ 124) how ¢ may be found in terms of
the residnals of the equations of condition.
123. Weight of any Linear Function of Unkacwns.—
Now let
u=le+ly+. . i

be any lineat function of the unknowns &9 2 . . . 1,20 that its

most probable value is 2N
=hrg+ly+. .+t

where (2, 7, . . ) are the most probable values\o}’ ~the un-

knowns. Let it ba required to find the welght oi e eguation
= 2y, ¥
It will be sufficient in the firat place‘,vt(} take w="Le+ly
Writing as before
bi=Ano + AL+ v A
[52 Au“z F A21b2 ‘P\ ‘ ot Ao

»

and writing
m= Alga' + Agzg‘ +. ..+ Amgfl, ete.,
we have Dy =g 1?’,3, Gyt b o Sy,
Dy 7" 70, 17 Tty + L L manm,,

and therefore
\J
Dy = (18, ‘\%ﬁjwﬂ% + (0 + Ugwgm, +. .+ (Ig+ ETATIER

Therefora if %, denote the weight of the equation =, we
have A&/
.

\‘jS Uy + U)o (g4 Py . .+ (16t Do
" Now we have already proved that

E0 + 20y . ok £, = DA,
and in the same way wo may show that

Symtty + &ty . o+ Lo, = DA,

ThGTBFOIB E — 32DA1] + 2zgrn 419 + liuzDA

20,
i) : &
or ;o_” - A1]§2 + 2A12” + AEE}" 2’

* Gauss, Theorin Combinationis, § 29,
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and gimilarly in general if w, is the weight of the function
It dgy+. ot I.t, we have
DA et e+ 2A00
Phis jormuls gives the weight of the deferminalion of any

linear Funciton of the unknowns,

194, The Mean Error of a Determination whose Weight
is Unity.*—We shall now find the mean error of a determina-
fion whose weight is unity. ¥or simplicity we shall suppose
that the oquations of condition have been multiplied by the\ \
square roots of their weights, so thab they may be taken to&he

each of unit weight., Let them be as usual . :’“«:
Gyt Dyt = nl‘l LY
. . . . NS \ (1)
gt + bt +. . .+j;i=-nsj \‘

Write \

aie+ b+ il - =1, 80 ]31, ]Lz,g‘ K, are the true

errors of ;. . . ., My, iy, .. 0 ATE ampposed to be the true

values of the s unknowns. ,x" 3

Write also O8N
g + bdpy o N F Sy — P =Tr;
80 %, .. . ¥, are the regu}uals when the most probable values
Ty o v o, /p BTE nubstlb\teﬂ in the equations of condition.
We have ev ldenﬂy
‘{rw] 0, [Ww]=0,...[f]=0. (2)
Also '\~ )
BN, =ayfm—ag) + By — )+ - - THE
P A } ®)
AN Ee- o PSR P PR L
...\I‘f[{lltlplylng (8) by 7, . . .. 7 and adding, yemembering (2},
have
[Ex] - - [v2]=0.
Multiplying (3) by E,,. . ., E;and adding, we have
[ER] - [Ev] = [0E]{z~a) +- + A BN -G
fo [EE]-[w] =[aR](z -} +. - -+ [FE](E — %)- (4)

* Ganss, Thevrde Combinationts, 3 57, 88, 30
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Now we have already seen that if coefficients &, . . ., £ ave
defined by the equation

Dry=£gm + &g+ o 4 &t

then [@f]=D, [2&]=0, ... [f]=0,
and
(e€)=oth + D€l +. - -+ el =[] = Dty =[] 0. _

Multiplying (3) by &, ... & respectively and adihg,

remembering the equations just written, we have )
'\
[EE] = (z - =)D A
Thus (4) hecomes N\ 3

D[EE] - D{»v] =[«E] [(E] + [PE] [+E] + O T JE=E}L {5

This is a relation between the sum Of* the squarss of the
regfduals and the sum of the squaresof the true errors, As it
stands, however, it is not suﬁlcien't\ to determine {EE], since
the quantities K occur also p]i:the right-hand eids of the
equation ; but we may overc.{ﬁ;ie this dilliculty in the following
Way: PN

Suppose the get ofj'observations repeated by the same
observers with the safde instruments under the same conditions,
N times, where '3 a great number. For each of these sets
of observa,bionh\ivé shall obtain an equation corresponding to
{5). Let thése equations be added together, and the resulting
equatiohdivided by N. The values of D and the s, &5, - + -
F'% £5 ., 7’5 are the same for each set of observations, but
the @, E's, and o's differ from one seb o another. Using the
symbol = to denote summation over the different sefs of

Sa0bservations, we have

%E[EE] - gE[w] _
~ S3aE] (28] « R SS/E) 7B

Now if positive and negative errors are equally liable to
oceur, each of the sums %I-EEqu evidently fiends to zero as N

increases indefinitely: and then the equation becomes {when
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we understand the sign of equalily now Lo indicate that the
two sides of the equation differ only by negligible quantitics)

D .
DS[BE] - )= £ byt + GEES . .+ uEEY 4

1,
+-I-\;LL}”171E12+. o VN

Now %EEE = %J-EEf = . .= %EEE =the squarc of the true
quadratic mean crror, 4. the value which we should deduce
from an indefinitely great number of obscrvations, KON

Therefore, denoting the quadratic mean error by ¢, we .ha'}?e )
Dse? — %2[@»} P\

. N\
= (T alyt. .l . o (kS L L femsle®
= Dme?,

w\,/
PN
1 2wl €
S0 SRR i IR
T im NN
In this equation ¢ is the true ’va’lué' of the quadratic mean
error to be feared in a det-ermiué&ibn whose weight is unity,

and %2{%{[ ig the mean v&lﬁuero'f the sum of the squares of the

2

. \ :
residuals,  Since the {me value of %J—E[w] is unknown, we are

obliged to be combent with that which is furnished by the
unique actual §6t) of observations: so for the most prohable

value of ¢ weyhave the equation
Z”\;' 2
/ 22
Q LB
\ 8 — M

. (This is Gauss’s expression for the quadratic mean error & to be

Neared in a determination whose weight is unity; denotes the
number of oquations of condition, and m is the number of the
unknowns @, ¢, . . ., & The quantity

Joz

is therefore well adapted to measure the precision of the given
set of ohservafions.
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125. Evaluation of the Sum of the Squares of the
Residnals.—We shall now show how [#*], the sum of the
squares of the residuals, may be expressed in terms of the
coelliclents in the equations of condition and normal equations.

We have
(%] = (g + Bl + -« o+ fifo— 1Bt o o (g o o b Sy — )
= [ma]z? + [b?:]yn o+ 2l . . o= 2lanag -

+[en], )
and we know that [+?] is the minimum value of the :umdlatic

form ¢ '\,

[aclo® + [0)2+. o+ 2abley +. . .= 2an]e . “, Flnn)

Frow the general theory of quadratic form§ wre know that
the minimum valie of this last form (wh.mh we know to be
esgentially positive, sinec it is a sum of aquares) is

[aa]  [ab] . ] [cm]
{at] [20] . '[aﬁ [{m

1

|

o | [an] {bn} [',m] fn ‘I

[»*]=" -__[at('?f'[’cab] &T]F] . (2)
J[{lb]' [68] ... &/ ]i

w1 w1

We may alde nstab]lsh this formula directly in the following way.
We have aheudv proved (§118) that

[T’,B] = Lﬂ”]‘ﬂo {b?’b‘]‘jo C [ﬁ!’]to + ['ﬁ'%]s

an Blhﬁ%tltlltlllg for w, y,, .
th}uu the squation (2),

™ .

¢~ Combining the results of this section with the equation {§124)

« o Iy their determinantal values, we

&\,
N/ = [
8= -
and the equation (§122)
A
exz =2, _L_l).l,

we see that the quadratic mean error to be Jeared in the deter-
manation 6f & is €,
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where

| |[tm] [eh) . . . [ef] [an)
6] he] ... [BF]] ilad] [BB) ... [BF] [on]
N R
e Y] [“"r’ ] LA fan] [bn] .. 7] _[ne]]
# w) [[an]  [ab] ... of)
fab] [bB] . .. [I"fj A

AL [ff] Oy

If the original observations arc weighted we must write febde]

for Juer], ete. \ N\
E. *—Suppose that observations of equal weight give:\y’
w— Yy+2x=3 \\,

Br+ 2w— D=5 \
dx+ y+4i=21, /HWV
while an ohservation of weight ) gives v
—2m+6y+6)—~2&‘
For the last equation we substitute & ’,.’,;
—nt By\—P’&z.- 14,
and the four equalions arc now 01’:3&1113,1 weight.
The normal egnations are 2

<£\:'T + By, = 88
Gx,(g-i- l"‘yo"“o— 70
\ Wy 040_101

7N\

which gi Ha915d 2617 12707
: f iy 4 2 — _ - -
1cH. ol\-(. K ;\.( —-[989!-]’ y{l_ ._.‘_37, 20 6633,
or SO 0, =470, =351, z,=1916.
\.J
Tl}e\'w(\@]n, ol the determination @ Is iy, where
A\ ) ‘ 15 1
~\J 1 - ﬁl _ Hd _ _803 :
N/ w27 6 0| 19899
6 1n 1
0 1 54
" 19899
o= g9
I 737 2211
and stmilarly wy=g T gy .

* This example was uged Ly Gauss himself as an illustration of the M ethod

of Leust Squarcs.
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The residusls are

4960 1320 1880 1400
19899 T 19809° 19809 1§89y’

and therefore the sum of the squares of the residuals is

1600
- S
(**}=Tog0g°

0 the quadratic mean error 1o be feared in the determination of x s

[+ 1294400

£ Where e2=" = a 989—9)2’ and similarly for €2 and &2

Wy X

AN
126. Other Examples of the Method.—The (Painciple of
Least Squares is applied in the first of the following cxamples
to a problem of curve-fitting, and in the secorihlo a gecmetrical
construction, "‘\
Ex. 1.—Find the values of the constants ay'h, ¢, which neorly satisfy
O\

the equution ,
&

B\ £
Ro=al5r

Jor values of @ between g and p,‘wﬁ'erg S} 18 o given function,
In this casc A\

LR Y

:;:'," boe 2
f‘{“w@-ﬂ ) 4

is to be made a r;nfj’l';\nuun, #o differentiating with rospect to a, b, and ¢,
we have the th’l@keéluations

e, g g P P
@7 of a2y = [
4 ¢ g i

> Py ? g P P
'\ by i T o J
N f T+ ;?Hf —= f M,
g"\ ¢ 7" g " g
..\’:.'

P e P Pdw P
f"'f ﬁ-l-b[ ;ﬁ;-f-f,'[ Tl:fjjl;dw.
¢ © ¢ o y

From these the valnes of e, & ¢ can be determined.

Ex. 2.—The position of @ point in o plane 4z determined as the {afer-
section of several Lines furnished by observation.  Owing to ervors of observis-
ton the lines gre not enmetly conourrent, Th Jind the most probable position
of the podns*

Denote by dy, doy . . ., dy, the distances of a point of the plane from

* d'Ocagne, Journ. de I Beols Fol. cali, g3 (1893), p. 1.
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the # given lines; let Ay, Ay, . . . A, be the weights attached to those
lines ; then the vequired point is that for which

Ad P+ A2 L L+ A2

is a minimum. This point may be colled the cenire of least squares of
the syslem
The centre of least squares iz the point for which the funetion

q_ g} Ao + by + C,Jz

i e b? N\
is & mininum ¢ so its co-ordinates are given by f:\:\’
s &
=% =0 N\
o Y . 4 *'S
n Noalitm 4+ b : 2 Abfanet b &y
or ;\_w:(j, EM;‘@V ()
o i+ by N RS

Now i 3 is any point whatever of the plane, and Q1405 .. - 0, are
the images of O with respect to the given lines, theyeentre of gravity O’

b

of particles of masses Ay, A, o . 4 A, 8t O Qé’;\ . . 0, may be called
the ayms haryeentre of O with respeet, to™he’ system of lines.
If O e (%, ¥}, the symmelric baryeentrg™0’ of O has the co-ordinates
(X', Y7, whers &N
o 2 Y 5 e
Ls® af+ bt

" 2\% Adifai X + B +¢9)

Y=V ——— 2
- ,\h; L.t:l aiﬂ + bﬁﬂ L] ( )

where =24, +. . . Bl
Now supoosa tl}a,'p.ﬂ'gin {aken at P, the centre of least squares, so that

Es
by (1) we have NG/
O
> I} T
O\ o At

Aghie;
\Y Tagt 1 B2 =0,

S nE "

\Y4
and sup}@ae the direction of the axis Pz chosen so that

:'\?; Aaib; 0
\'"\F‘ 4 a2+ 8%
hen the egustions {2) become
2 S b
N

T L%l + b2 TL a4

. 2. )\tﬂiz 2 _/\ﬁ)—
and ginee (1 — EZW) + (1 - TJE@,-Q + b2 %

these may he written

X' = !;.X., Y=- PY-

(D 511) 9
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Let 07 he the symmetric baryoentre of O,

The co-ordinates of O are X" =p2X, ¥ = p2Y, and therefure the Fne
00" passes through P.  Moreover, the lines PO and 10" are equally
PO’ POY
PO “FT RO

inclined to Pw, and 5~

Fia 17,

Therelure the triangles PO'O” and POO' m}“qimilar arl 'Y miakes
with 0’0" an angle equal to the angle Q' O&"‘ Thus the centre of least
squares P iz the interseclion of QO il the line (P which makes
with 0’0" an angle equal to O'G0" 5 Srbtherwise expressed, the senfre of
lecest sguares b the intersetion of OO” with the tangend al O to the circle

00!0”

127. Case when two. Mea.sured Quantities occur in the

same Equation of Cendition.—We shall now consider the case

in which the quantity = in an equation of condition '
A\

.‘\aboi-b‘;—ozk L fi= (1)
is not 1tse}.f a measure derived from a smgle observation to
which &\I(:no“'n weight is attached, but is & known function ot
twr\iltmasures p and ¢ derived from different observations to
wiiteh weights w, and w, are attached. It is required to find

Jthe weight which must be attached to the equation (1).
Let the expression for n in terms of p and ¢ be

n=¢{p, 9).

Then a small error € in p and a small error p in ¢ give rise

0

dp . . :
to an error %e + %p. in n; and therefore the weight w, of n18

<

given by the equation

1B\ g\l
(&) 5+ (@) w;
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The equation (1) is now to be treated as if » were a
meagure derived from a single observation having the
weight e,

128. Jacobi’s Theorem.—It was shown hy Jucohi* that
the valnes of the m unknowns which are obtained from s
equations of condition by the Method of Least Squares may be
derived alsa in the following way. Take any m of the equations
of condition and solve them as ordinary algebraic cquations,
obtaininyg (2ay) a value A ¢
A\
sy = éi(where A, and B, are determinants) \.

for the vuknown = We can select the m equationfor this

o

. 8 M\
pUTpoRC 10 9 Ways, where p= , and thus obtalu\p”values for
b 4 T 7

: w\/
T, v A7)
i M \{.
T NS
=1 e IS F F N *
B, B, AT 13,

z < N
Then fie vwlue of @ given by the J‘liégfbofi’. of Lenst Stuares 18

LAY AR +...+A,JBp
SRR 57 s o B

This reenlt is an Wdlate consequence of Cauchy’s well-
known tlicovemn on the'equivalence of the two forms in which
the produet of L\{O ctrravs can be expressed : thus in the case

of =3, m 2,\what 13 to be proved is

dyit + x\\ﬁfz i @by F by +agh
I Aty 1 2l aa
hf*?.»’\ + By bz b2+ 1?2
|rr2 +g’f"‘ +a? albl + by + gl

alb 3 ftoh, + adb b+ D+ By
by ey | 20y || by } ‘ﬁzg“;
ﬁ?JJ | tty Z‘ ﬂ»'_sb_g_a'sby 3 EE3__3_E;
|nr b |2+ Lerdy 12 gy |?
fty E.f ! ff3}}3 as‘:-’}s

which follows at onee from the theorem on the product of twe
#1Tays,

* Jowrn. fir Math, 92 (1841), p. 285.
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Ex*—Conslder the systemn of four equations wsed by (auss, and
worked cut in Ex, § 125, above, viz

m— y+2= 3 (1)
&1 2y—B2= b, {2}
44+ y+42=287, (3)
— @+3y+3 =14 )
Now equations (T}, (2}, (3) alone wounld give
90 115 it}
“5p Em T

N
the numerators and denominators being the cxact values of Lhohde-

terminauts, thus, L)\

1-1 2 o\

3 2-5| =35, etc W

4 1 4 N
Equations (1), (2}, (4) would give '\\

122 167 (93
L= 47 Y = = + «\= AT

Equations (1), (3), {4) would give ¢ :\ o

78 ugy  er

Equations (2), (3}, {4) would rnxe

— 304N —~ 444 — 23

- 1243' Y= _Ta@ = T1aw

_ (90 ?{N (122 x 47} + (78 x 33)+ (2304 x 124)
¢ 28J 35% 44724 3582 + 1242

4h‘lat

1‘9899’ as before,

129, Ga,Se when the Unknowns are connected by
ngQTbus Equations.—It frequently happens that the un-
]QQWDS %Y % . . .t are not independent, but; are connected
by rigorous equations: for instance, if =z, 7, = represcnt the

L=

T

B0

\\ * three angles of a triangle, they are connected by the rigorous

equation 2+ +2==. In order to discuss this case we shall

suppose that the unknowns are given as before by a set of

linear equations derived from observation
ox+by+. . +fi=n
ATt byy+ . L Sy =n1

(1

a4 by +. . +ff= %J
* Glaisher, Month., Not, a0 {1830), p. 800,
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(where 7y, . . ., % are the observed quantities), together with
# rigorous equations
1 (xa 9, e )=0
¢2 ( : ) = 0 ( 2)
rﬁp(:r Yo o v £)=U

We shall suppose that (by multiplying each of the equations
of condition by the square root of its weight if necessary) the
equations of condition have been rendered all of equal Wﬂg}ltx
Then, ag in the proof of § 125, we mee that the most prob&lﬁe

values of the unknowns are those which make ;’w
E=[ne]:2+ [0 +. o+ 2[ablay +. . .-2[an]a=—"*~ + [nn]
a minimum, subject to the conditions (2). We ‘must have
therefore ) \\
Gl ok X‘
a—wdd"-l-a{zji ad,—O
where dw, dy, .. ., df are subJeet Qniy to the conditions
% L0y Ocby
&cdu-'j-l* dy+ atda_o

agf,)?dﬁ’ + gﬁady +.. .t :}gﬂ?dﬂ
e \\ .g .

and therefore th%”f.lﬁi:nowns are to be determined from the o

equations ’

{ \‘ VE 3‘1’1 Oy 0‘1’33
\,\\ b + A % + Ay m +. +)\p
,,~.“,:3 dE Oy Oy A 8_%30
\m\ 63%“"‘?; M“"B‘.?;'Jr"'Jr oy
) 4
'? o,
E -+ A 3_(1,)(’;14-;\8(1{)2 . +Apg§1 0
(where A, Ay, . . ., A, are unknown multipliers), together with
equations (?). We have therefore (m +p) equations fo de-
termine the (m + p) unknown quantitiesz ¢, . . o 8 Ay - A

o — The measures of the four magles of @ plane quadrangle are
% 3, v, 3, with Weights 4y, o, Gy Gy vespectively.  Find the most probuble
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wafues of the angles, and show that the welght of the value found Jor the fivst
angle iz
S19a83 + 1y T hilally T Fallslly

)
Paffy + ol 1 By

50 that 1r;hm ull thr‘ welghts are equal, the weight of the fina! wmlue of an
angle is & the weight of an oheervation, )

Tet the angles be @), 8,, 6, 8, The equations of cowliiion, reduecd
to unik weight, are

N
:Jﬂ]_ 1= '\/glg’? Jg202 = N/gﬁ) '\/5393 = '\/93"/! J\-"]f.lf.q'-qfi = {i‘f_;ss
ALS
and the rigorous condition is 1hat W\ \~>
'\
O+ 8, + 0+ 0, = 2. A

We have therefore 1o make NG

{8y~ B+ gy(By — B2 + (6 — ”:’R{F‘Q\q.(?ﬁ aa
& minimum, subject to the last condition.  ¥WeNHave therclors
(8, — @), + g6, — Braf, + g3(€3‘\i('bd9 1 9By ~ 878, =0,
where the differentials are subject to tbe'z eondilion
a0, + dﬁﬁéﬁd“&s +df, =0,
and therefore - \v,:‘; *
910y — ) =iy — B = 438 — v) = g6, — 9.

We thus obtain »<
3\ fi .’&_;’_ﬁ._l_-. ub_‘)-—)
\6\‘—_\'& _ Halfafis YT i

Ballgfa 1" 10590+ thfally + Nithalls

s

ar \ {; J1 atfa + O3 + '“*’qJn) Holfslly

.\~ ) 20199004 " 20y0a,
d%uml&r expressions for the other augles,

Donoimg the weight of 6, by W, we luve at ouce

(B4-v+8-2r

= {5’1"”‘2“*"ffwwwl?l {gomta V(14 10 0
W, iiollally J Vopaa) Nty 93 64
_Folia T @M+ g4y
S Syt Ve s+ 0,05) + s}
@"a(;’q‘i‘%.}‘l it Gatts
-'sz)'q"?’d
or W= Hnﬂfaj4+qlng4tﬁag4 | oy

Gall3 + Gglly + 048 ’
which iz the required resnlt.
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130. The Solving Processes of Gaunss and Seidel —
When the number of unknowns is great, the algebraic methods
for the solution of the wnormal equations, which have been
deseribed in § 117-120, become exceedingly laborious: under
these circumstances, the normal equations may be solved by
u method of successive approximation in the following way.

Writing the normal equations

L S S ]
(gt + gl 10 o+ At =02 A\ ¢
; oA\
Qpaie W + o o T gl = Oy \
we first assume for @, g, . . ., { any system of valwegh Bince

in the normal equations the dlauonal coefhuent&‘are sums of
squarcs, whereas the non- dmuonal coeflicienta\'are sums of
products of which in general some are pqs;ﬁwe and some are
negative, it is most often found that th\ﬁlagonal coeflicients
are larger than the others, and thal’e.fore the eorresponding
terms are most important : 8o \Vg}».ﬁherefore generally take as

initial vaives for z, ¢, . - ., { thedptumbers
0 0y S
"f{n: '-'7-32, T
respectively. : \i’
With these asaude values of z, ¥, . . ., £, we caleulate the
quantities
A N =ayw+ay+. o F k=6,
&
\ M.: W T
and t&k“} Ap= — N 1,
= LT

-~ "We can now assert that by adding Az to the assumed value
\of z we ars improving it: for if we demote by ) the sum of the
squares of the residuals when the assumed values are put for
Iy ¥, . . .t we have

Q=0+ g+ o o+ Cyl® + 2ty + 2022 F - -
t+ Qaptt . . — 2o TR
=(@pe+a,y+. . o ot — )y

+terms depending only on %, 2, « .« i
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If in this we replace = by « + Ar, without changing y,2,.. .4,
the effect is to destroy the term (e z+. . .+ apdi -6 in Q
withont affecting the other terms: that is, the elfeet is to
diminish 3. Now the set of values of 2, %, . . ., { which we
wish to obtain are the sét which make Q a mimimgum: and
therefore if we say that one set of values of w, v, .. ., fisan
improvement in another set when it corresponds vo a smaller

~ value of Q, we can say that by adding Az to =, withont changing

the values of ¥, . . ., £, we are cbtaining an improved sefof

values for the unknowns. A\
Now with the improved set of values of 2, 7, (., ¢ we
caleulate the quanfity N
Ny= g+ gy .+ o+ gt = {2{.'
and take AE)' = - gﬁ. !
Uon oy

X\

In the samo way we can show, thab to add Ay to the assumed
value of ¥ is an improvement.{ Proceeding in this way, we
improve each of the values q;;g‘fg . . . #1in succession, and then
return to @ The procesa’;fﬁhich is due to Seidel® may be
stopped when the resilial N’s are sufficiently smell In
common with all itétative methods of approximation, it has
the advantage thajb?a.n errar of caleulation continually corrects
itself in the s‘su"bBec'iuenb steps of the process.

Ew-—LEt"ils"Solvc Ty this process the normal equations of (auss's
original eXaripie, namely

A& 2Tc+6y =88,
%w‘ [ 6z by 4 2= 170,
R\ iy 4 By = 107.

We take as a first approxzimation
2= 28 =3 roughly,
=12 =5 rouglly,
z== 107 = 2 roughly.
Then N, =272+ By — 88 = 23,
and Ax= N, 22

~g7 = gn= — 085

* Mineh. Abh. 11 (1874), Abt. 3, p. 8L
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Thus the improved set of valuey is &= 2:15,4y=5, = 2. 'These give
Ny= 6+ 10y +4— §0-=19-9, and therefore Ay= — ?;': —1-33, s0 we
now have e=2-15, y=367,2= 2, and Ny=y¢+ 5de— 107 = £-67. Thus
D= — %‘1_— - (086, giving £=2'15, y=3-67,2=1-914, and N, = — 8.

x

Beprating the process, we have

A — )_71__ %= 0-206, giving s = 2:446, y = 3-67,2= 1014, X, = 1-640 ;
= - ...\
N-J. . ;) * =114
Ay= — 2 — 01093, giving 2= 2-446, y=3-561, z=1-014, N o
13 Ny= — 00833 ()
'S\
\_3 . . N = 05,39\
Bp= ~ /=001, giving w = 2-440, 3 = 3561, 2= 1915, Ny = — 0843
5d N
A _;;_1:0-022, giving o= 2-468, y = 3-561, 2=1-915, Nye0-138;
N, . . 15
Ay=— yi3=" 0-0092, giving o= 2468, 'y=3-552,:¢\%,1,‘910-

¢*{
These differ enly by at most 0-002 from the tmus;’v}lues‘

If Seidel’s process be carried out for 3-geb of equations with
literal cocticients, such as N v
oz + hywgz=1,

Ao # by + fe=m,

Lgx}fy +ez=mn,

it is readily seen that t\\e value of # is what would be obtained
from the formula ¢ N

x'\:Hr mon £ 2 g® M\
0, ‘(1 s _1_¢ 1

o

el b I
ANehe
&\\ lg i

bl\eﬁiﬁuding the last factor by the binomial theorem as an
ffipite series. . |
A method closely akin to this had been commu‘mc&ted maﬂb}
years hefore by Gauss to CGerling.* It may be illustrated by
the following example: +
i ix & tne's work on the applieation of the calcu}u&f of
COIHI}SES::}Eliir?p{zlen}()l::ctﬁza,?e:s:)r:ﬁuir;m(liﬁénS), P gf};ﬁ Another very similar

Process was deseribed by Jacobi, Jaf. Nuch. No. 523 (1’8-45): p. 297,
t O, A. Schott, 7,8, Const Survey Rep. (1858), p. 2583,
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Let the normal oguations be

O0— 28+ T6e — 30y - 20 — D,
0=~ 41 - 3054 83y — 250 - 28y,
0rs — 10— 20z — 25y | 80z - ddn,
0= 32— 260 — 28y — 44z -|- DRu.

To ageertain which of the unknowns will probably be the greatest,
we examine the quolients:

28 41 . 1-0
=20 003, y="1— 4 gn 2o o — (02
x 5 03, ¥ % + 004, & 12, A\
32 g
U= — 98‘_':..<0 03.
Accordingly we begin with i and write y = 004 4+ Ay, ’le cquations
now becomo N
D= 160 + T6éxr — WAy — 202 - 2
0= — 078 — 30w+ 834y - 25,5 9%,
0= — 260 — 200 — 254y |- G0N 44u,
C= 208 — 26c— 28Ay — %'+ O8a,
. x‘\\“
Thiz gives for quotients {roughly} ¢t
__leo 078 Ny 290
®= w6 = — 002, Ay= 5 :j.'{}-Ul’ 2=y o 0-03,
208 oo
N w— — 2 002

We therefore now substi\t:u:&b =083+ Az: and proceeding in this
way, tho whole solution 1iay be brought to the form:

v.—ﬂ-f-'d zE‘d ‘ 5~ (L z-—--U-n.J_ e 00l Ax — —0008 A% —6002 Aw — WORL
- . . \ﬁ"— _ J—
0= 160 300° 070 — 006 020 -. 0028 0012 — 0014

=078 SNB3 — 070 - 040 — (12 _ 3030 — (020 — 0008

— 2000023 — 048 — 428 - g6 4+ 0220 -] 0-042 — 0-002

P07 + 048 - 0T4 - 0924 — 0062 — (074 — 0024

,@G"opemtinn is now compicted il we are satisfied with two places

g%fdecimals, and the first unknown qusnbity is 2 + Ax 4 A%+ ... o0
vt = —0-013.

Similarly ¥= 0050,
= (28,
== — (00,

131. Alternatives to the Method of Least Squares.—at different
times various methods have been proposed, obher than the Method of
Least Heguares, for dna]ing with problems which are commanly solved
by that method. We shall now notice hricfly some of these:

1°. The Method of Tobias Mayer.—In the latter half of the
cighteenth eontury the most plausible velues of the unknowns were
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commanly foond by a wethod whicl had boen published by Tobias Mayer
jn 1748 and 1760.% 1t consisted in arranging the equations of eondition
fugn sety, [orming t-hr:_ sum of the cquations 6f each sef, and. treating the
pruations =c vibtained as normal cquations,.  The method is decidedly
inferior to iba Method of Least Bquarces

3° The Blethod of Minimum Approximation.—Consider a system
of & incompaiible linear equations in s noknewns {s>m):

) el by, S =m (¢=1,8, ..., sk
Replace it Ly ihe following
'\2}' g - :’_rl-l.;y +. .. -!-ﬁ_t — =7 (1,: ]) 21 L ] 3), N

where the guontities ry may be ealled residusls.  The name m'fiﬂ.ﬂ'\;ﬁﬁm\
approstmaesicn of the system (J) was given by Cloedseels T to the smallest
calue which we cin assign to the absolute value of the grca.‘geaﬁ;‘esidna.l
of the system (2}, in ovder that this system {2 may be coufiatible.

The problem of determining the minimum appeixitation of =
system. (1) was evunciated and rolved by Taplaced\Juw’ 1709, but his
method involved sueh Jaborious caleulations A8MO be in gencral
impractivalle.  Bix years later, in 1805, Legeil@l% proposed the same
problem, in the appendix to his Nuswvelles Mathodts pour lo détermination
ds srhites dos vonides: he found no easy waihed of solution, and proposed
to replace the wethod by that of Teast Scjuzires.

A mueh hetter solution was gi\;eﬁ:én 1911 by (. J. de la Vallée-
Pousgin . § 3 N

3°. Bdgeworth's Method, —daking the data as nsual in the form

o BNt - S

"N
\&2‘73"'" bay+. .« cHfb=ns
whare n, 7y, . . g are measares of equal weight, T, Y. Edgeworth in
1887 || propusel i fefine the most plansible values @ %, « -« ¢ in the
following wav(s },"y, .. .t are to be such as to render mrindmunt the sum
of the r.'ri‘).wgg%}ﬁﬁ-i-ues af the residucls,
]a‘a:j:L\\:.f_ff_.-- e FE_
| el \'|_J ! il L (f.E.A.'I—. . -+_}r.. }7_2]-7,-_,_
&N\ i =] 4| u | age+ by + - - Tt — ]
is derivable {rom the

\If *nay readily be chown that this rule
#\hppothesis thut (he law of error is of the form

\ }
3= %he —Im’
where 2 is taken positively in both directions.

* Kosmographische Nochrichion und Sammlunger.

T P T T Goedsesls, Thdorie des erraies & obseriation s
1 Wennique edleste, Livre TIL Ko, 59

§ Annales de 1o Soe, Se. do Bruwelles, 35 (1011), By 1 10
| Phit, Mug. 24 (1887), p. 222, and 25 (1588}, p. 184

Touvain (1907}




CILAPTER X o

PRACTICAL FOURIER ANALYSIY \ \J)
132, Introduction—For the description g phenomena _
and the solution of problems in Physics, /Agtrdnomy, and
Meteorology, much use is made of Fourder sepics, that is to say,
series of the type )

Fy 2 \.: )
g - ity CO8 6 + @, cos 28 £, cos 30

+&, sin &+ 8, siu .‘21{,\% by gin 364 . . (1)
where ug, ay, £y, @, by, . . . are {niiépendent of 4.

Uonsider, for example, tihes vibration of a violin string.  Let
a stretehed elastic stringBe fixed at its end-points and fale
the axis of & along the Es‘l}ring, so that the abscissae of the end-
points can be lakennto e 2=0 and #=17; lot ¥ be the dis-
Placement {in Q‘jmécbion perpendicular to the string), at time
£, of the point of the string whoso abscissa is # Then when
the string ‘isi set into vibration in such a way that it emibs its
fundamerital note, unmixed with any overtones, ity vibration is

#

repr(:s\eﬁtéii mathematically by the equation

o

SO y=Asin T sin (V4 0),
"\ where 2ifA is the period of the note in question, A depending
" on the mass, length, and tension of the string, and where A
and « arp arbibrary constants, If the string is set into vibra-

tion in such a way thali it emits its first overtone (the octava

of the fundamental note) unmixed with any other sound, the
vibration is represented by

2ma;

i sin (2M + 3),
260

¥ =D sin
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while the second overtone is represented by

y=08i1173_7?25in (3 + ),
and so on. When the string is set inte vibration in a quite
general fashion, so that all the overtones are present in the
sound emitted, the displacement at time £ is ropresented by a
gum of these terms; thus

y=A sin ’; #in (A +a) + B sin %;i gin (2Af + ) @
A,
+Csin " sin (31 +9)+, O @)

and thercfore the velocity ab time ¢ is represen?jasby ‘

%\ sin 7 o8 (- ) + 21 Bsin 2 cos (231 1
i x'\ w

+300sin 28 3149+ (@)

Suppose that at the initial instant, =0, the displacement
and velocity at every poin};:ﬁf the string are given; let the
displacement be $(z) and thé velocity be y{x). Suppose, more-
over, that we are in poa%ession of a method which enables us to
CXPress 4. piven fuqqtio\l [lz), which vanishes atz=0 and z=1,
as & series of the form

S, sin "’T"" + By 8in 2?’ +Bywin 3_}”"’ . )
:t_\‘"’:
where @iy, 5, . . . do not depend on z, but depend upon the

Dﬂf?lﬁé’éf the function f{z). Applying this theorem to the
"51.17}"3171011 ${z), we should have an equation

. J .
) . T . 2w . 3wz

N\ ${) =p, sin r_3_ + py 5N i}-— +ppsin =+ . (5)

where py, p, g, . . . may be regarded as known, since the

function $(z) is given. Similarly

7 et H . B
Yl) = g, sin ? + 7SI %Ef +gg8in— e e (6)

Where 91 Gy Gy - - » MBY DO regarded as known,
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But putting =10 in (2) and (3) we have

¢(w) = Asin asin 7 + Bisin fsin ?}“". + Csin y sin g; e
Yz} = AA cos e Bin n% + 2218 cos 8 sin ?
-+ 3AC cos vy sin % ... {8
Comparing (5) and (7) we have N\
Asino=p, DBsinf=p, Csiny=p;.. O\ 9
Comparing (6) and (8), we have O ’
Moosa=1g, 20BeozB=¢, SrACcosyely .. (10)

The systems of equations () and (10) ené‘ble ug to nd the
unknown constants A, o, B, 8, C, 5, . . .Jinterms of 5, 2, Py 20
that is to say, in terms of known quiwtities. Thus equation
(4) enables ns to analyse the iniﬁia.i’ data into constituents
A, o, B, B, ... such that the firgt pair of constituents (A, a)
gives rige to the fundamentgul]yoi:e of the string, the second pair
of constituents (B, §) gives\rise o the fivst overtone, the third
pair of constituents gi\{;eé.;:ise to the second overtone, und so on.

_ As a second illughwation consider the Theory of Tides. The
tide-generating padential due to the sun and moon may be
expanded ag a\séries of terms of the type

Asin (A +e),

xvhergéﬁ%notes the time and A, A, ¢ are independent of ¢ but

Chaf“gf" from one term of this type to another. FEach such

‘?thtltlle]lt terin gives rise to an oscillation of the sea, the

"j’.’p.scillation having the same period 27/A as the term in the

(O tide-generating potential to which it is due; and the height

N/  of the tide at any instant at any scaport may therefore be
represented as a series of terms of the type

A'gin (M +¢€),

where the constant A is characteristic of the particular tide
but is the same for all seaports, while the constants A’ and ¢
are characteristic of the partioular constitnent tide and the
Particular seaport. By analysing the observed tides at 2
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seaport by means of a theorem similar to (4), we can find these
constanis A’ and €; we are then in a position to predict the
tides at this port for all future time.

A geries of Lhe type

tly - ¢ty 008 + @, €08 2x Az o8 3zt .,
+b, sin e+ b, 8in 224 bysin Bw +. . .
is generally called a Jourier series, the coefficients ag, a,, 4y, . . .
being called Fowrier cogficients: and the representation of a
given fuuction by means of a series of this form is cal}e\d\
Fourier wuelysis. The term ‘Zrigonometric inferpolutionNs®
perhaps more appropriate when (as in the present chg.pt.,ef) we
arc concernad only with finding & series with a finede number
of terma which takes given values for a given ﬁm& Hurnber of
values of the argument . ’

133. Interpolation of a Function by a Sine Series.—In
the last article wo have seen the importance, in Applied
Mathematsics, of a theorem which will’ enable us to analyse
a given [unclion into a sum of trigonometric ferms. The
problem wag solved, at any'r‘fiﬁte in its simplest form, in
1754 -5¢ by Clairaut* and dagrange,f who showed how fo
conslruct o s of 4 ﬁ:e“égﬂ??:ﬂ-mééf-z'c terms, such as

Q!

ulz) = sin v+ bysin 263 b, sin 3z +. . .+ Dy ysin(n -1 (1)
which il tike gm}k values for {n—1) given egmslly-sp(wed
values of the argument x ; say,

A X
'U-(E) == fF. ‘\; /2_”\ = 2;(,3_,2) = u((i% _E)ﬂt> =¥u-1
7 "l,i\’:' ('ﬂ; )I = t 4 F TR L "

wheregh,e,, . . ., %,_y are given numbers.
elfect this, Lagrange remarked that the sum
PR .
NNar g L dpe . 207  fn-Lpr . (n—Lgr
\Sin& sin 25 + gin 2pm gin 227 4, . . +sin (n = Lhp= sln ~—— =
% b ) i T

(where » and ¢ denote positive integers less than ) has the

value Ln when p is equal to ¢, and is zero when p is not equal
t0 . Therefore the function

* Claivaut, Hist, de P dewd., Daris, 1754, p. 545

T Lagvange, Mise, Tawrin. 1, (1758}, p. 1: reprinted (Fuwres de Lagrange,
Lop 3% Mise. Tawrin. ili. (1762-5), po 2381 reprinted (Fovres de Logronge,
L . 358, -
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27 . pT . . 2y . . fa— Dy
- smmaml% +8in 2z 8in % +. .. +@in{n - 1)azsin (———_L Up
by ;

f

T . i
bag the value #, when #="-and vanishes when x= "—L where
Kt

g is different from p: whence it follows immediately that the
toefficients in (1} must be given by the equation

#— 1

(n - L) }_,\

b 2{7; sin 77 1y, sin 2 + + 94,1 8in
="t —tu —_—. .. -
At n 1 " ) n -1 7

Tt should be noticed that the expression (1) satistds’ the
condition that: O

1°. It takes the prescribed values Upy v o sy uﬂ,}’,@t'ths given

values of the argument, i e\

2° Tt is periodic with period 2., AN

3% It is an odd function of a. '

Suppose mow that wu(z) is a funclieh of z which fakes
preseribed values w,, . . ., u,_; at the given valucs of the
argument, but suppose that the™ifction u(z) i¢ not peviodie
and is not odd; in such a casd, the cxpression (1) would have
a graph agreeing more or lgss' with the graph of the function
#(z) between z=0 and =7, but the agreement would cease
altogether for values of 2 less than zero or greater than = Tt
is importent to rez}h?se that by this method é!f interpolation we
can cbtain an expression which agrees very elosely indeed w''”
a given funcpiqn over a certain range of values of the argu
but whiclg,.\‘()utaide that range of values, bears Lo rescint
whatever o the function. ~.u of ¢ but

134.3 more general Representation of a Trigiach suc
S\ 8.—In the last article we obtained for the fun. sea, the
J8u"interpolation formula which is formed of sines or1 in the
~ “yshall now obtain a more general formula* which * height
\ > both sines and cosines, and which, moreover, enshles™ore be
make the best use of all the data in our possession, whe
have more data than the minimum number Tequired.

Leb it be required to find o sum

a0+(slcosx+a2008273+...+as.,cosm:} '
+o sinw+b, 6in 2e 4. . 43, sin e

* Bessel, Konigsberger Besbacktungen, 1 Abt, b dii. {18153,
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which jurnishes the best possible vepresemtation of o function
w(z), when we are given that u(x) takes the values Ugy Uyy - -

a,,_1 Tespectively, when a takes the values 0, ?’ e g(ﬁ-n L=

respectively: = being some number greater than 2r. The

problem is to determine the (2 + 1) constants g, &, by, + .+

ap b, #0 as to make the expression (1) take, as nearly as

possible, the # values g, %y, . . ., %x-1, When z takes the values |

2n—1)r

»

0,=", . .. 2% 50 the equations of condition are SO\
7 7 &
NS ©
U=+t +, o 8y A d
_ 27 2.2r A
“1—'“0“““100‘3?“““20057 4. . . C08 ,g\:
%, . 207 . 2750
+ b, 8in — + b, sin S oDy sin RN
7 T *hy
W,
o= 2.2 4, 2 70 2, B
J 7= (g 4 by COB i - F t, 008 -—~n—+ v o g BBy 08—
2. 2 4.27.' W, . 2r.2x
+&, 8in —— + 1,8 oA Fhgin ——,
PO n
p—T1)2r SO r(n—=1}2r
wu._l:a.o+arlcos(——-)—+. Lk C08 ( )—~
I \\ ]

. ('ﬂ. — 1 21{ . ‘?"(ﬂ 1.)
+3Jl aln —g‘\’-‘-f- +f) qin -
n
The normal eguation for e, is therefore
vyt Uyt G g

& 2 - 112w
\!\;’#nﬂ-{,+a1-{l+ cO8 ﬁ—%. . .+cos—( n) }
* ".\\ f 2. 2r 2n—1)2x
Hatyt L4008 — .. . FCO8 T T
o | 7 -
4 \ V4
\\' ...
. 2 © pn-1)2m
+a-r{]- 4008 . . HOOS T ——
9 . 2.2% L (m—1)2%
+bllsm—+sm = '+Sm'_'ﬂ_'_}
Fa e _
. 2w r{n-132r
+Z?,.,Lsm R o=
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Since

Ao n — 1};

211
1+cos — +co s—+ . .+ cos )

3

when % is an intcgcr greater than zero and less than =, and

T ¥ . 2(n— l)fw—
gin — 480 ~—+. . . Fsin ——-— ==
i T ?’Iu
this becomes N\
e
’ p — 2 AN
Uyt Uy T iy to o b Uy = Pl {\\
The normal equation for «, is A
(N
2w 2,2 (xf ] 2
UgF Uy CO8 2, GO8 " ., . . Uy .1 COS, S
% R\ MK
2 n—1)2%
= %{1 +008 k. L +6O8 e ?;{x—’) ‘)}R}
+ o:l{l teo T Lt coﬁ“‘ﬁ‘L---- iy
7 NS owm )
a3
2r 2. 2m7 2.2 4.27
+a-2{1+cos——cos &3+ com T cos +. ..
no O % #
N { 1)2x An—1)2
\ - Cos — -
m\ 7k
+. .. \\.'

2 (?&—1)271' . (?3-—1}2‘:1'
* Z’ l"@@‘— sin -- ~ ..ot 00s st ——-—}

7t
‘\,/
A

%U\'Smg the trigonometric formulae

h

)i 2 4 1) 1
ST+ eos? T cos g, L a0 T oy
O n 7 7 27
j i 2. 2% 2.2 4. 25
\’ 1 +cos = cos + cos T cos LI
% n % 7

+oos 2 ;—J) cos 2 ~Dr_g

7
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this becomes

= 2 '??nfi’-l.

"The other normal equations may be obtained and reduced
in the same way; finally we obtain the following set of values
Jorty o Ty e b

2z~ 1)1

+ 08 .-—I T, cos — + *+ -
A H, GOS T 5 L . Uiy .1 GOB —-
0 1 7 2 % -1

1 w—1
= 2
0 &
M=o
iy o=l
dy="- 2 %zC08 —— O\
B p=n . e
N
. . . ¢ N/
2 w=l 2hery N
fley=— 2 4pCO8  —3, O\ (1)
P iy T \\
, 2 rl . dem
bi== 2 wugsin
T L=q i A
. . . .7,
W/
2 -l . G
b= 3 wpsin 2N
B r=0 JENS)
o\

1 N 21 2
When r= _n, the factor of a, in fronitvef the symbol Z is o not o

The conneciion of this res'ﬁlt' with that of the preceding
article is easily seen; in fach, the formulae of §133 are merely
those of the present arficle adapted to the particular case when
the function % i a,n\Q}i'(é periodic function of its argument, so
that w(z) = ~ w{Z4 “—fr) For if in the formulae (1} above we
write 7= 2p ghd "ffauppose that a,= — Usp_1, U= — Ygy-g ©tC,
with 2= 04\"?»\;= 0, then the formulae (1) become

ﬁ'ru = ¢;\.>\:{‘T::‘_- 0.. R D’

i

i

-

(p - 1)&?},

et ) - . 2ma .
WS | T ST SN kg S 7
. f })

N\
Whith agres with the formulae of § 133.

135. The 12-Ordinate Scheme—In most cases in practics
the number of given values U Vg, Uy, . - o 19 either 12 or 24.
We shall first consider the case when 12 values are given,

Let it be required, then, fo obtain nn TPression

hy+ 1, COS 2 + 1, CO8 220 4. . .+ (1, 08 B+ e cos G

+hysine+b,sin 22+, . .+ ,8in b

which fui;
whes given walues s Upy o -

~

4y, respestively whem



WA
any Y

N\
N\

N\
N
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7 2 ‘%—r 11
takes the vadues 0, A SRR

of the last article, written in full, are now

12@0—u0+ful+w2+ Ug + Uy F Uy + Mg b Uy + g Vg T Uy T Uy

3 1 3 3
Bery =y + ity ";——i-ug- % Uyt = Uy JZ — U~ U ¢ '1’;—
,’9

—

B, = 1, + 4 L u —1-~ - 1+u, 1+u +u-1 \’
27 o0 12 '22 3 42 52 £ "\'\Z.“

p
1
N e 1’10&2“‘3*"11‘2'
Bty == 2y — oy + Uy — Uy + Uy — Uy :\ (44
i 1 N 1
ﬁcz.4=fa£-0—u-1-§~?.¢2-§+u3—'aaq—-j u5-§+us—u7-§
\Y; 1
_u£\§+"”9 LT T s R
N3 1y B NE:
Bty =g —uy 5ty ,’“‘4 Gt g gt U g
":’..‘ 1 1 ’\,-‘3
‘.':,“ — g " .§+u.10. g»-.:3!,511.. ?

3 .
12605 =14y — Uy + g —ifg + 1y — U+ Uy — U+ Ug — Uy + Ugp — Uy

1 o
63}1=1¢.1-§f\{§;}2 g+ Uy "gg+u5 %»—u_ 1J g - JZE
\ /8 1
\) e e N? ]

~"\’«3 W3 _ B B, W3

be%l . +u2-—-1-54- 5~ U 2—--1-‘?)!-7- '
p 9
O 3 /3 . 3
& ORI S
6hy =2, — g+ Uy — U+ Ug — Uyy
3
Ghy, =, - "'/ — Uy “;ij-i- 0, - —"-/—smuﬁ "/B—ru.? “‘;‘3
3 /3
= gt Sk Uyt g —tUp
13 1 NE
655=u1-§—u.2-7+u3—u4-% .@&5-2 u7--2:u3--2—
3 1
™ g+ Uy Ng_'"“n g

1 1 J
8 z'{"’:zu 2'”"11 9

~ vespectively, Formulae (1)

Lo(1)




PRACTICAL FOURIER ANALYSIS

If
Uy Uy =Ty
Hy + Uy, = B,
U+ Uy =Ty
Uy + Uy =Y,
g + Uy =T,

the equations fale the simpler form

6;‘!_1 = g._f_o |- 1;] a

W
7"{'1}2-2

-

6Py = wir » 5 42y - N3 —F %3 + iy -

Uy = By =0y
Uy — Uy =1,
g = Uy =1y
Uy — Uy =l
Uy — Uy =y

120y =ny + 9, + v, + 0y + 0 + 05 + 2y

J3

4‘?"‘?"5- '-2”—’.',56
1 1 1 1
Sta=tty vty 5=V G TV 5+ 20
6(‘_, P g . \\\
NCIUEE S M
GRS SRR
-112“3 = QI[J—®1+{U '13""?3 ?‘ﬁ"5+%

2

&7 3N ~/3 _~/3_,yh:~_/§.
2T Ty Ty st Ty sty
GD& =i t\d\}{?—i_ e
£ ' b
6224 _f,-;;—“,\ﬂé_{'?) 24 .){3-‘,—@4.“‘/_.3 At JS
x:s\'ll 2 2 2 Z 8 2
Y 1 J3 :
S o — Wy e Ty — Wy T W
4 -1 2 3 4 5
“{‘\ 2 2 2 2
N\
@@how write
Uy + Uy = 10 uo — U=
Yyt Us= V5=
Ya TV =Py I
P3=1s
Wy Fwy =1 W W=
Wy + oy = Wy — Wy =5

Wig= Ty

A

3 1
-+w5-§

269
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the equations fake the still simpler form

120y =po+P1TPa+ s
,J 1
Buy =1+ 4y 9 iy 9
1 1
Bty =po+ 1 5 ~Farg TPy
6"'53 Go— T2
1 1
Bty =po— 1 57 P2yt P A
QY
1 = A
6’-"55=Q0_Q1'N/—5+fz 9 Y O
p, t“s“ "
1205 =p, - P1 Do §2}} ‘
Ohy =7y 5 1 Ty "éﬁ SXPRNS
O
3 B2
6h,=s, “/7 F 8y “/2_(\,
Blo=ry =75 ONY
el o B
6h;=3,- %%\);"82 . ‘/7
655“= ?‘;;-‘g— Ty 23 + ¥z
.*\
Now write | &,\
I N 1 1
2\“ =Py, 2332 =Ry, -2_132 =1, Ea'l = My,
7 k] /3 ]
'\ﬁgl %—?2= Mg "—‘} 8, =y, -";—32= Hoe
\ v
\(}}ote that Q =0.866=1- i 0 910-, which enables

,»\‘i)multiplication by 3/2—0 0 be performed mentally.)

Then the equations may be written

12, =p,+ P+ 71+ 25 6b, =my + 93+ 7y
1ag—=po-tPo— 1~ Ps 6y = miy + 79— My
bay=go+tl+h ficty = o — 42
Bay=q,+ 1~ 1, 6b, =0, + By
By =py+ Py — g — Iy 6b,=n; —n,

Bery =Py + Py — Py~ Py 0y =7, — 75

the




72
7%

045 afod mufof

,\AV

A"
78
Py + g 1+ 5% % Tp=Ty
% S+ Fp 4 8y 4 By T %Hosnﬁammo
s \ )
w&
_ o
f59=009 | "9 =00¢ {*o=9891 | m@mwv
q9=q1Le ; Tgg & \wm*
3 4 Nw
svs |7,
0891 =B | goLT="u | g4 =% 0891 =% mmnr\Nv
oggz=" | g00g="v | ¥yea="F |gPLz="w grrr="m | 916 V)
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and therefore by = & (15— g} + s {6)
Next, putting » equal to 0° and 180° in (1), we have

Uy =thy+ by F ty %} M
U= Ul — &y + iy — Oy ’ :
whence g — g = 200y + Ag),
and therefore ay =% (g — ) — g (8)
Equations {5) and (7) now give
- tly = 3 (g = 2y o 10 = Ug)- ~9)

We have still to find 5,, For this we shall suppose that'the
complete graph of the function w(z) is known, so He Aye can
read off the ordinates at any point on it; let us Gond oft the
values at 2=45° 135°, 225°, 3156° and call thead 3 g Uy g TEm
spectively, Then, putting »=8in equation {1}of § 134, wehave

7 G
bﬁ = i’ EO ak Euijl:.‘t \\_é:
or by=3{us — ﬁg'j%‘lb—:'»"’ w)- (10)

Bquations (2), (3), (4), (6), (€)y(), (10) give the cocjiinionts Gy
g, O gy by, by, by merely fgg.jbhnéﬂg averages of £ megsured
ordinates of the graph of wlw).

Eo—To find an applokimate formula for the Fourior series which
represents the followingabservations :

iy ¥ ‘ [T [:»u.} Uy ] By g | Uy \ g | [ g
S AV A R A SN N
2.714 3-042'.2:13;;1—27310-788l0-495i0-370]0‘540 0-191\-0-357!—-6-437 0-767

Formin*g; the sum of the entries, we have

:'\~“3 12%:%0-}:%1—1-%2—{-. .ty
A& =11-520,
30\ = 0-960,

and we now form the following sums :
Bty =g — Yy + Uy — g+ g — Uy wheneo a3=0-271
Ghg = iy — 10g + Uy — g+ Uy — Uypp whenee by =01

by = Jlug — ug) + by whence b, = 0-915
oy =% {1y — vg) — U whence @, = 0-901
daty =y — thy + Ug — Ug, whenece a2=0-542.

Finally, forming & graph of the function u, and reading off the ordinates

%y, Ug, g, Uy cOTEESpORding b0 the arguments »=45°, 135" 925°% 518
respectively, we have

462=u1—u3+e.a5—~u,‘,
~ 236,

whence ' by =059 (approx.).
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Thus an =] Proximare formula [ur the required Fourier acTien is

0960 + 0:90 cos £+ 0-54 coz 2z 4+ 0-27 cos 3z
4+ 092 sin &+ 0-59 sin 2m+01tm 3.

137. The 24-Ordinate Scheme.—We shall next consider the
case when 24 valnes of u(w) are given, corresponding to x=0,
15°, 307, . ., 345° Denoting these by wy, %, . . ., Ygp the
problem is (0 obtwin an copression

t, - (b COS & F &0y COY e+, . .+t e08 122
+hysina+bysin 2o+, . o+l gin 11z !\
’ N
which toles glven volues g, Uy o o o Yy respertively ufw?z z
237 3
tekios the values O pespeetivell '.'~
1 -l 2; i J_ B P - M'\ &/

If we fovm the sums and difiercnces of the 78 Blazs :

% ¢'
Uy Wy Uy Mg . - . Uy ’li-{g,:\
gy Uy Uy« - U
Sums v, v, ¥, Ty o - : U s

1%L et A g >
Differences ) 0, %y .‘:,:‘..,wn

-

then the formulae (1) of § 1802'kﬁpplied to this case may be
writhen ~N
i\ .
2day == v, F 1y + Oy T BB A g R R R TR et
12a, = v, + +, cos 10 ¥, Gos 307 + 25 608 45° + %, c08 80°
+ 1, aod 7.) —P'vb'(,os 90° , cos 1057 -+ v, cO8 120°

- 1y COR ]\5 T vy, cos 1507 + 7y €O 165° + ,, cos 180°
- S . . . .
A8 —T®ﬂ 15° 4 w1, sin 30 + 1, sin 45° + g 8D 60° + 10, sin 75°
o, sin 90° - e, sin 105° + g 8in 120° + 0, sin 135°
M\; WA gy sin 150° + a0y, 8iD 166°

Now form the sums and differences of the +'s thus:

By ¥ Y Y5 Pr U Y

o
het} b _'_‘f"_m_?"g _ _
Do P Pa Pz Po Ds Py

T H1 2 s gy
(D311} 10

N
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and form the sum and differences of the w's thus:

wy oty Wy Wy Wy W
U

(!
Wy e My e My
oy Ty Ty Ty Ty
8

T T T

Then the equations become

2ditg =Pyt Py TPyt Pyt PatPst P N\
120, = g, + g, co8 157 + g, cos 30° + g4 cos 45° + ¢, eos 60°
+ g c.d"s 75
120q= py + py €08 30° + p, cos 607 + p; cos 907 + p, cos REA0)
+ 5 €08 150° - 3, cos 180°
1205= gy + q, €0s 45° 4 g, cos 907 + g5 cos 1357 00 JS ¥
‘ \ + g, cos 225°
12z,=p,+ p, cos 60° + p, cos 120° + p, co§180° + p, cos 240°
Py cos 300° + 3, cos 360°
1205 = g, -+ 4, cos T5° + g, cog 150° 3 r,v ‘eos 225° + g, cos JGO

- + g, cos 376°

1215 =g+ py c08 90° + p, cos 180" +;pg cos 270° + p, tos 560°
N + 5 008 AB0° + g3, o3 5407

126, =g, + g, cos 105° + oy obs 210° + qq 008 315° + 94 cos £20°
F 4, COB 525°

12a =3, + p; cO8 1{21} + p, cos 240° + p, cos 3607 + p, cos £80°
N -+, 008 600" = p, 008 720°

120, =q,+ !‘;’I:QO‘S 135° + g, cos 270° + g, cos 405° + g, cos 5407
A\ + g, cos 6767

120y, :‘% 5y cos 1507 + p, cos 300 +p; cos 450° + p, cos 600
+ pg cos TB0° + p, cos 900°

\
19'}1l = 4o+ ¢, 08 165° + g, 003 330° + g5 cos 495° + g cos 660°
Ay + g, cos 825
VY 246, =p, + p, cos 180° + p, cos 360° + p, cos 540° + p, cos 7200

+ . o8 900 + p, cos 1080
12b, =7, sin 15° 4 7, 8in 30 -+ 7, sin 45° + », sin 60° + 75 gin 75°
+ 7 8in a0°
12h, =3, 8in 30° - 5, 8in 60° + 5, 8in 90° + s, sin 1207 + s, sin 150°
125, =7, sin 45° + #, sin 80° + 7, sin 135° + #, sin 180°
+ 7y 8in 225° + 7 sin 270°
128, =5, 8in 60° -+ 5, 8in 120° + 5, sin 240° + 5, sin 300°



PRACTICAL FOURIER ANALYSIS 275

12h, =7, 5in 767 77y sin 150° -+ 7y sin 225" + 7 sin 3007
+ 7, 8in 375° + 7 sin 4507

12b, =5, ¥in 907 5 83 gin 270° 4 s, sin 450°
12h, == 7, 3in 1087 + 7 sin 210° + 7, 5in 315° + 7, 8l 4207

+ 7, sin 525" + 7 sin 630°
12h, =5, sin 1207 + 5 sin 240° + s, sin 4807 + 5 sin 600°
12h,= 7, 8in [357+ 7y 8in 270° + 75 5in 405° + 7, 6in 540°

+rg 8in 675"+ vy BI0 810° | AL
19By, =4, in 1507 + 8 gin 800° + s, 8in 450° + s, 8in 600° a
+ 5, 8in 75‘9\}
19y, =, #in 165° +#, 8in 3307 + 7y 5in 495° + 7,80 660° | \J

+ 7y 8in 8237+ 748 9907

Novw fsrma the sums and differences of the p’s‘:ﬂfué:

Po " Pe Ps

~NY;
Do Fs Fa :\ 1’,\
Sums ! I LN
. 0 1 2 O\¥
Differences  w, My Ta
Thean we have N

ay =l + 1+ I+ }:z

12a, = my + M, L08 20° + m, cos 60°,

19, —1, 4 603 80° + [ cos 120°+ 7, cos 180°,
120, = g+ CO3 90" + m, 008 180°,

124, fga‘; {, cos 120° + 1, co8 240° + 1, cos 860
TZ{W= Ty -+ my c0s 150 7, €08 300°, )
24d,, =1+ 1, 008 180° + I, cos 360° + 15 cos 5407,

Q) O =ly+htlt e
~O ]
W 120, = o+ ga= e

1
_12(]"_8 = 30-— ]531-' QZQ‘l'g ]

2dery, = I,-4+ - Ly
J3 1
121, =78+ Mg + Trogp

120, =g — M )
A -
12{510 =gy~ My —2— + mgz.
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Next form the sums and differences of the ss, thus :

81 Sy 83
S5 8, .
Sums &k Ay
Differences #, n,

Then we have
12by =7, sin 30° + %, sin 60° + k&, sin 007,
{12334 =7, 8in 60° L 7, sin 1207,
{120, =k, sin 90° + I, sin 2707,
[)58 =ny 8in 120° + a, sin 340°, Y

£
\..

‘/

‘\

B/

\126,9=%, sin 150° + , sin : %00°+zw\m> 150,

5

N

&
EJJ !

%gfx

‘)N(Smfa_ 1y,

Now write

12, =k,

.I

190 Ry~ T <

g1

12y =k, - %Q % ﬁ +E,

Y "
—a\ \5'3 P ’J'ﬂ
128, ‘—:n:ﬁ o T
A‘:":' 9 ;
T o 8
1 .
—l =1 %mz;-}nz’,
By, By
GN PR T Ry, GOy Ty

,C[ﬁheﬁ the equations become

\w
\\

ey =(lg41) - (1, 4 1),
2y = (T + 1) ~ (I, + 1),
12“4 - {Z - l21 ) - {ly + g:s)!
Vg =L+ 1) - (I + 1),

120, = {m, -+ m o)+,
12{110 (g -+ m,) — m,],
120 = my~m,,

128, = (k4 ¥y) + s,

i 93)10 =(h+ k) -,
124, = E,l = I,

125,
125,

- ; L4
=, 4 n,,
! L4
=" —n,.

1
21
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In crder to caleulate the coefficients with odd suffixes we
write 45° — 80° for 15°, ete., and so obfain

o 7 T}, WD
L2y = o ! f,jz] - ‘)( 5t _32> T (~;2 Tt £2)
hy_ B_, _ %

s
12, ={q,+ ';2_,:' *z_ f ﬂ'

ol e e
B
Now write \\\,

: ey

Ql =q,/ i% =i, 24 3
;/—2—‘21: N sy J7 "5

I3 I 1 N'Irg
0t s =1y, 2Q4 «f‘l S Ch >
, , X ” f?)
H— s —r‘n"z}ﬁzt
4 .|\;’ f 17 .‘1’4’ o 51'2’ =£y
’J\X = Fe U0 =l

Then the equations become
AN

t—!],

W (12a, =g+t 7y + 71

i"\..{' 120y, =Go F b~ 5 —Jv

& 1903 = o= Gt b= s

e {120 = 4o = o — T2 T Ca>
~O 190, = o+ 6~ % 1o

\/’ (120, =g, 6+ ~fa
‘We have also
b ¥ 1 b 0 13 -ﬁ -}-i‘s—-i'?'),
12?}‘1 = (‘Tﬁ - ,\‘;32> + ;)( \/12 +— ’Jr) +7 ) + 2 (\/2 ,jZ *
s 75,
s w w

120 =r, - \/Jz 2 N,g. ) J(\,_. \/2 :

125, =
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: Py 1S e, NETEE

126, = - L .2 'L 5 —-?:,) -i——‘—<- g j,

g f 2 2(.@ N A R W RN

o
1259:.\/_2 ?z-r-:/g—;/z-f"?‘ﬁ,
ry 1 7 7 B

12y = g+ jz +2< ,J‘T‘JJF 35'2 ?"> o (5t o '?’1)-
» Ty . L O
Put -;/2_?1, 73T «/9_?5, R

1 3 , \%
g =0y, Qk‘ =h 3/—Jfa- =hy/, oy = MY,

2%
1 3 A I
' ’ P NY Fo O\ R
-rl_,r-szkg, g}z-—.fg, 2—34—!4,",?&‘7"2““}{3
Then the above equations become v

128, = (G, + 1)) 4% 7)),
12bl.l = (_.?.1 + }{-]:')’} K?'z +7),
h 12?}3 = {F“'z + i?’} + (?‘2 _ _?,6:}’
128, = () = (r, = 7,),

1205280, =) + (f~ 7)),

.

12?}1‘; (’]“’1! _j.l) - (,}""2 - '?'4!)'

The calculation ¥ made on a computing form arranged

as shown in tha\ gheots inset
Ex 2.—5‘1331:?\}1,@ Fourier smpression for w8, given

O
oy N

e 8 | ay | w | e
Ll .

WV

H N ]
|y } Uy Iﬂa[ L RCTIH

i»é@o | 401 | 378 ‘ 241 | 73 | -6 | 100 | — 60 o a1io7j-s4

w4
gy 1y g § Mg | gy |y, Uy Uog Mg Hag | b
S e R T E Y
NV 1000 -127 [ —100 | —a1 | o | L1g | —100| — 207 | 273, - 241 ;-—100‘107
;n\’ W

N\

[Answer, 100 (sin € + cos 64 win 20 *cos 28 4 sin 36 - cos 36).]

138. Application of the Method to Observational Data.—

1% Adjustment fo Period—1n applying the above-described
method of practical Fourier analysis to chservational data, we
have first to find the values of the argnment at which the data
W Uy Uy 4 L L, Uy ATE B0 be taken, Suppose, for instance, that
the ohservad perind of the phenomenon is 185-28 days. Then,
sinee 24 of 185.98 g 7.72, if we take #y to be the value of the
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ohserved quantity ab the instant £, we must take u,; to be its
value at the instant o+ 7-72 days, while «, will be its valuc at
the instant £, + 15-44 days, u; will be its value at the instant
f,+ 23-16 days, and 80 on.

98, Allowance for Secular Change—In many cases the pheno-
wmenon whose variation is to be sbudied is not strictly periodic:
thus il the numbers to be analysed reprcsent hourly means of

. sOme mefcorological phenomenon, the means for hour 0 will not
\  in general be the same as the means for hour 24. This difference
X iy allowed for in practice by applying a correction to each of the',
_\ [brms cxcept that for noon. N\
90" |\ 30, Allpwance for the use of Means—In many cases the date
105° | m which the Fourier expansion is to be computed’a;ef nob the
tual values of the ordinates corresponding t.o‘:t}ie values

190°
-I?O, 25 ... of the argument, but the mean 'mlm{ of the ordinates

taken over certain infervals. Thus if weafigh to find the curve
which represents the annual variation of pemperature at a given
station, we genetally take as data the, mean temperatures of the
- welve geparatie months. It is e}‘idéﬁt, however, that if we were
Jo calcalate the curve dircetly? from these data, taking the tem-
210%perature on the middle dayef July to be the mean temperature
%f July, we should introduee an error, since the average ternpera-
g1p-Jure on the middle day of July is not the same as the average
Yaperature over ¢he whole month: in fact, the curve obtained
the meam’awéuld be too low in summer and too high in
ter, the .ﬁ'rire' curve being external fo the curve of means.

7o oafy Heal with this difficulby by applying a correction o
dat&a\n the following way :

bat” My _qy Wiy Wiy ba three succesgive means, each tak_en
‘an interval 2¢; and let w, be the true value of the funciion
the middle of the interval over which m, ig taken, so that
is the quantity which should be gubstituted for m, as @
um from which to construct the Fourier representation.
We shall suppose that the function may be represeute(.i with
flicient accuracy for valnes of the argnment in this region by
/&N expresgion

=+ 2 + deat,



N

. ';.iﬁhe probable errors of observation affecting the daga YUy, My,
NS
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where o, &, ¢ are constauls, and where » is the argument
measured from the middle of the interval over whizsh My, 18
measured : we have therefore

17« P NG ; . 1 Jr‘-'is ;
=0ty S, = wdi, m o= ade, - T ude
"B 3 w1 3 [ 1] ‘P . [ H i1 3
2e — e Ze - - J-_'
Performing the integrations, these equalions give
Wy =t = 4he + 1308, '\
My py =0 + dhe - 1302, a
My, =a+ 6 R\,
1 Mg+, 1 \
whenee ei= — fgp — —PTL TeaN )
12\ 2 24
and therefore D
1., s WEND - B,
Wy =0, — 8% = b | el e
U = 1y, = 80, =, i 2(\;3»;,1) g
» “ \: 4 .
That is to say, in order fo convert A0 given mean ut, o tha
true ordinate corresponding (o NN Widdle af the inlerval vver

which , s taken, we add corggbtion equal to one-Fuweliti of the

e0ess of my, over the mean edom, .y ond Moy

An alternative method i&’{ﬂf’;cmnpute the Tourice expression from the
given menns and then malfiply all its periodic terms (Ze all irs terms
excepl the constant g@h\by a factor which represents 1he ralin of the
amplitude of the lrué\eirve to the amplituds of the curve of weans,

An Ezample of\Darmende Anelysis—Tn the accotpanying example
the data are tak& rom observalions of the magnitude of the variahle star
BW Cassiopaiiy ; * the magnitude of the varialle star is denoted by

The eufve represented by the harmouic formula is drawy in the
figure. :'{‘he observed mageitudes of RW Cassfopeiac are also given in
Jﬂ‘ig.{% 0T irpnses of comparizon,

Nﬁl@. Probable Error of the Fourier Co efficients.—Knowing
Wwe can easily calculate the probable errors of the values
deduced for the Fourier coefficients Uy tty, by @y, By, . ... For
{88 89,94} if ¢ is a linear funetion of s My o o o U, SZY
Aoy F A L Ly Ay, and if the probable srror of cach of
the quantities B Uy - .. w18 g, then the probable error
of e s A2+ A2 4024, -+ AHg. Thus in the 94-ordinate
scheme, since iy =g+ oy =L L s the probable error
of ay s ¢/, /24 or 0-204q.

* B. T. Whittaker and (., Martin, Monthiy Notdees, K. 4.5 71 (1611}, . 811
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16 Light-curve of th

5 )

15 tow) -21 -3 -~ 62 -76 - 82
—|—-32¢ 848 358 p _
el S ) -8 -1l -ME -0 -8 [N-T5
— ytosg) 7 ~ 45 - 19 12 16

45 ity .."\“\'
— A
_ﬁjf__ {pptog \ N7

75° | ag ! (pg to 2 ":\:‘,

50° | g |  Snms (B to i R4

— iffs. \V

105° | uy | D.s (5t 1o 97

120° g 'xt’\\"
———— S

135“ Mg - ’s ":

150° | 2ty (%0707} lo'=" o) ~

1657 | uy ,.:'”é N

1807 | gy ‘::;

195° | wyy 11eD By'= —28:6 AN =183 g0= - B3 [ 7=~101 jr=~B65
i B re) -

210° | a1y, 18 . \“J ty=— BL9|g = —130-8 hfy= 4D | ry=-T75
P NSum | gum |~ 245 =f| -1838=¢ - 1305 =4,
il R "'1';..D1ﬂ'., Dift. | - 121.2=7,] T18=¢| -141=4

240 Yy '1:1252 :‘\: 9,

265° | uyy 1 =120\
il i @,

20"y, (N

285° | gy 150-5| By TOB = -111] Af=-112 | =130
3008 z 1918 lry = - 101 |-7g= 76 —-jh= 141 1—r;= 1212

: —21-1 29

815° |y 2(15 »

330° [ 4, |
— 2 Z57.1=125, 19-7=128

845" | g | pon 100+ ayy 008 118+ | 189125, 38-3= 120,

—“in 109 + by, sim 118,

- 0-042 cos 78— 0+056 cos
+6:092 sin 78 +0-035 sin ¢
'50.+280°) + 008 sin (64

To fact page 280,
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A sine term and a cosine term in the Fourier represantation,
which have the same period, are often combined intc & single
term thus, -

@ ¢os 6 +bsin §=Rain (§+a),
where R = /(% + 8% and cos a = /R, sin o = af/R: we ihen require
to know the probable crror of R and « assuming that the
probable errors of ¢ and b have already heen calcnlated,
Suppose that the probable errors of @ and & are eaidiaof

amount ¢, Then, since KQ
- e + Hdh '\ K
SR=" . 4
Ty )
we see that the probable error in R is e More;o‘i'ér, Sines
\.
St e bée — adh “\
R IS
the probable ervor in o is A
o
Waz-—l-‘f}g)'

It is important to have .piéﬁr ideas on this subject, since
otherwise there is a rigk ’of: garrying the computations to more
digits than is warranted“By the degree of accuracy of the data.
This remark applies particularly to the computation of o.

140. Trigonométric Interpolation for Unequal Intervals
of the Argump!\lt}—Lastly, we hall consider the representation
of a funetipd\i(x) by a trigonometric interpolation formnla,
when the*values of the function are known only for a set of
Vﬁlue}i\@ﬁ ¢ -« mn of the argument, which are not at
equaldntervals apart,
<\ The problem, which ig analogous to Lagrange’s problem in
M:\’.orﬂinary interpolation (§ 17), may be golved in more than one

Y Uway: 15 g readily seen, indeed, that any of the following
expressions will gerve -

JL .
wly B E(Z—B)sin}(e—c) . . . gin £ {x — n)
tfor) = = - . ufa) +.
B0 (s~ b)sink(a—e) , . | sin & {x — n)
N3 (s —a)sin Ll _ in 1 (2 —
+S3n$(w n:)s%n?(,c oL, sp%(a; m)“(n}',%
I z(n—a)sin L(n—15}. .. sin 3{n—m)

* Qauchy, Comptes rendus, 12 (1841}, 1. 288 = (Buwres (1), 6, p. 71.



PRACTICAL FOURIER ANALYSIS 283
28,

(cos = — cos b) (co8 » — 608 ¢) .. . {cosm—cosm)

(cos e —cos b) (cose —cos e} . . . (cOBa — COE )

, (evs —~cosa){cosz—cosh) . . . {cosw—co8 )
s

" (cos 7 — cOB @) (CO8 7L — G0BB) . . . (€08 1 — OB 91) i

w{a)+. ..

[

Eoaa]

) = sin (o ~ cos b) {cosz — coge) . . . {vosx —cosm) (
sin o (cos ¢ ~ cos &) (cos n —cose) . . . (CO8 P, %—)y @y Fa A

sin 2 (cos = — cos ) 08 20— _ \
Lo r{cosm—rcosa) . . . (cOS cos m) w(m)* O\
sinz(cosn—cosa) . . . (COS R —cO8 M) AN
49 O
gin (w—B)ein f{w—c) . . . 8in{z- O3
e ah = = ( ) : (o=2) on (2= 7) w(upd > .
sin (o - bysin (@ —¢) . . . 8in (& —n) SN

, sin (;r,! - (.E.) gin (&‘J — Z)) ...@8n (:_;f_‘. — rm) v ]
TEm(n—a)sin(n—10) . .. 8o (ﬂ‘{‘ﬁi) ).t

Fu i— Tiscuss the relation of the aboyeJerfiulae o the formulae
i for equal intervals of the argumept o §§ 133, 134.
v, 8.—By making b tend to equality=with & in formula 17 above,
ehtain an interpolation formula fmut]’l{z"case when the funetion and its
first. lerivative are both kllon'n,.a't"(a:=a, while the funetion alone is
known at =,y . . . R N

{'Ihis is nseful when we haplbéu to know the values of the argnment
for which the funetion 15 alThaximum or a minimun.}
Ex, 3.—Apply the gf;ﬁ St the above formulac to obtain an expression

{uy
N 2
P f {0,
. o N 0
{Use the fofmila
A\
e 'E“.: 1 1 _ P N 1
[&.f‘ilﬁé (& —xp) sin ) (& —xg) . By (5 — sipp) = g1~ COD(E.S - s;,)’

P D o e
sEhere s denotes w; + %+ « + Zag and sp i the sum of p of these %)

\ 4 [Baillaud, Toulouse Anm, il (1886}, B.)

WMISCELLANEOUS EXAMPLES ON CHAPTER X

t is required to find a Fourier

Tn cach of the following examples i Fo
s of wu(zy represent equidistant

series for w{z). The tabulated value L
ordlinates spaced at intervals of ¢ of the compleie peried.

* These two formulue are due to Gauss, Nacllass, TWerke [1868), fL P

201, 292,
1 Hermite, Cours &analyse.
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Ex 1—

Uy ”1 thy u%i ”‘1 thg | 2y |ty ! tg | g, | g | oty i By My
_ —_— —— ——J--—.-— —-—_I—-— — | —
4 38168, 7 In 2 91.76|94]118[115' 73 | 85 &y | 78

T 1 |

; v, ! I i ; " .
Y15 | Mag , Pap | Mg | My | By | My Moy Uy

7786 | 7443 | 50 |85 85 | 20— 10
Bz 23— N

160 : TLl | '!{2

g | oy g | iy u7 i ity | fg My, I r:u,\* 12

1 11_i_o_: 1051381158 159 150 1123914211 134
Uy | g M g | gy e g | “on | “21.,[.(‘3%2.‘4 Han
140|135 | 150 | 160 |'134|190|120 IOO&Z:E\T'GG Y

'y o | :
z.r,5 g |1r, | '”s | ya’q’frem: TR PR

25 1 13516045 : a0 44 | ()8 | 1l8 olf{‘? 1501 122 125 158

By | g |y Dy, | LETI “’9 4 Hogy ‘ Ty | Yo . Yz
125 85 | 83 ‘ 60 |\ 70_i 28 | 45 | 56 | 40

Bz, d4.-_ u:’

Hy ! oy u3 l{\ g .| up | oaug TR

7o 1 s o0 30 0 ror T 1 ol o
‘ [Ny ‘ e | ”1" | %1 | Hpp g | U | gy |

75 ERETEEY 4869 | 105 130 :6| 160
;"\‘Ié; ADDITIONAT, REFERENCE

”\)”' G. C. Danielson and C. Lanczos, “ Some 1mp1memcnt3 in practical

Pourice analysis *, J. Fronklin Inst, 233 (1942}, pp. 365, 435.

[Copies of the Compuistion Sheets facing pages 270 and
278 may be obtained direet Jrom the Publishers in guantities
of not less than one dozen, af the price of 25, 6d. per duzen

seis,  Special ferms will be o gusted for orders of one thousand
and upwards.)



CHAPTER XI
2N

CRADUATION, OR THE SMOOTHING OF DATA P\

14}, The Problem of Graduation.—Suppose Lhﬁt}«.as a
resalt of observation or experiencc of some kind/We have
obtainad a set of values of & variable » correspiiding to equi-
distant values of its argument : let these valusgibe denoted by
Uy, gy g - o Une 1L hEY have been dgfided from observa-
{ions of some natural phenomenon, WhEH vill be affected by
errove of obgecvation; if they are atabistical data derived from
the cxamination of a eompa.rati:{élj' small field, they will he
affceted by irregularitios ariSiz;g;ffrom the accidental peculiar-
itics of the feld; that is, 50" oy, if we examinc another field
and derive a set of values'of » from it, the set of values of
derived from the © 0’\1%01(15 will mof in general agree with each
other. In any pase) if we form a table of the differences
Aty =1, — 10y, iﬁ;léz;&'%s—%g, L, O = A, — A, ete., it will
gencerally he Yoind tha these differences ave irregular, so that
the diFfﬁih&:e table cannot be used for the purposes to which
a diffufetice table iz usually put, viz. finding interpolated valnes
of i differential cocfficients of 4 with respect to its argument,

"'Qf“aeﬁnite inegrals involving . Pefore we can nse the differ-

_ \ehce table, we must perform a process of “gmootling ”; that is

t0 say, we must find another sequence Uy, s v v s w, wWhose

terms differ as little as possible from the terms of the sequenee

Uy, Uy o . ., tp, DU Which has regular differences. This smootlT

ing process, leading to the formation of My a,, 18
called the gradwalion of adustment of the observations.

For example, let uz popsider an extract from the Government Fermale
Anunitants (1883) Ultimate Table and form & differonce table of the

285
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eviries. We have, denoting by g, the probability of a person aged
dying in a year,

w{Agel 1. A,
50 1019
531
51 1560
61
52 1611
142 A
53 1753
T8 A
54 1772 '.;‘~>
-224,)
55 1548 P §
AT
56 2022 LV
\ ~99
5 1923
57 x.\\; 1
1842 L O
> \ x\ 487
59 2320

The differences are altogetllag'.’ii’regu]ar, and, as we shall see (§ 155),
when the data are adjusted the ifferences become more regular,

In dealing with experimental results of no great ACGUIACY
the smoothing progéss'is generally performed graphically,* but
in the present chhpter we shall be concerned with more refined
methods invqlhng analytical formulae,

142. Woplhouse's Formula of Graduation. We shall
considex ﬁ,\rst a formula which, though now disused in practice,
is of eohsiderable historical and theoretical interest. Wool-

Q@a‘e’: proposed ¥ to pass five ordinary parabolas through the
wfive sebs of points

D g g ), Uog ), (%o g 1), (Mg, 0y, ), (2, 0, 205)s

¥ For the best graphical method of. T. B. Sprague, J.I. 4. 26 (1886, 1. T7.

For valuable comments en such methods of. Whewell, Fovum. Drganam e
revatug, Book 1L oh, vil. p 204 of the cdition of 18K8.

T LA 1B(18700 p 389. TnJ.7.4. 28 (1882), p. 351, G. T, Hardy showed
that the calenlations reqnived for the application of Woolliomse's formnla might
be performed by a * columnar * process of enlenlation, in the form

M =k B(1 - 3604578y,
which is identical with the form (455371 - 857, given Tator by him, sinee

A:Z=[5]; and T. G. Ackland, J.7. 4. 93 (1882), p. 352, showed that they can
be performed by summations of & different nature.
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and take as the graduated value of w the arithmetic mean of
the values derived from these five parabolas. Now using 4,
to denote the operation A performed with the interval 5, by the
ordinary interpolation formula (§ 21), the values derived from
these five parabolas are:

2 3
2
I _ s
thy = Wy T+ 5A51¢_2 2_535 - {from w_,, %y, %),
2.,
o=yt -5-3516_1 - -2—5;35 U_g (from w_g, -y, ) R
2N
¢\
11, =1 (from #_s, %, ¥g) AN
= I’A' 3A2 from %_,, y, O
by =ty sty F 524 Uy (from u_y, %y, 6\),‘
2 7 O
e = E AR .
= Uy 5&.5 g, + 2535 %_g (from g, ww\u?)

Therefore if «, denote the graduated valxu{\gf iy, We have
2 1 1 2,83
L B R ; + Y i 2
Bug =10 v, + 5‘&51"’—2"' FAst-1 ! .5%";4'2 g5 -
PR S
- §5Q52{{_’:'}:ﬂ" QBAS Uy + %35 %, (1)
where [5]r, stands for 7., + tanFto+ 2+ ¥z
The operation of repla.cing& term a4, by the sum
L n_lﬂk‘\- T -+ﬁ'r+n—l

[E Tyt | -

- ‘5,' -
will be called su-mma-{,i}zgy w's, and denoted Ly the operator {n], so that
1;-;;]:%::_— B Rt Tt
PN\ T % ) )
Wo shall/me{n]? to denote the effect of performing thiz operation
twice in sdidssion, so that, for example,
N/
[5@0 = 2, 4 By Bty + 4%y + g+ i g+ Bt Qu_gt+ g
...\Siﬁce A, = [5]Duy, and &%u_, = [5]28%,, equation (1) may
,@ctwritten

£ 2 1 2 3 2
-[%Tu-ﬂ’ =iy + 51\15.0 + %Aul - gmzs - Eﬂ?td - 2—5{5]32%—3 - %[5]*’-\-2”-'-2

3 - 7 -
+ 2—5[0]A2ﬂ.0 + ‘—zg[a]i\’*ﬂ-l
2 3
= = 25l B - GBIt OISt gl
7
+ %[5].&2?{-1,
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—
B2
sat

[Sr) i
I

80 y = — 10wy + 18w, — 34%_5 — 20%0_, + BA%y, - Ta2y,

—
e}

= = Ju_gtdre_g+ru_y + vy +ou, + A, — Suy
— 3[Dfu_y + T[5]u, - 3[0]u,.

Yhus Woolhouse’s formula of graduation may be written in
the forms

’ 5 3 b K 4 A
e = %( = Bty g+ Try— Bar,_g), \ Q
- (57 . [ ~Z\A
or* o, = }7]5(1@, - 3Fu,), oruw, = 108 {10117 - 3[:3},} 5
e f 1 a2 Dl 21 ..(”:‘,}
or ey == ES{ g .(?l’.-._;_] + ?.E-x_|_1) - (‘{f-x{_:g + .Lx.i.g.)
+ Tty n + Ugag) -+ 3(tp g+ Upr) O ‘Ru-m_p, T tprg)

—~ Bty + tyyp)h RN
or oty =0:200m, + 0.192(2, ; + -f;mz_;i}}— 0 L68(30y_g + Vgrn)
+ 0-006(1,5 + 2y13) + 0220, _g + 245 14)
— 0-0L6(r,_g - 2y p6) 7;.0'- 0241, 7+ tgan).

143. Summation Formulae.t—The formulae of Woolhouse
may he regarded as a pa-i'ﬁibular instanee of a class of gradua-
tion formulae, much\used by actuaries, which may be called
BUIRIEELOT !_;f"o-rﬁ}’i"g‘?s, and wlhich are based on the following
principle. %\

Let A @enote the operation of differencing, so thab
&15.1;:1{;4_'1;%5 u,; and, as in § 142, let [2m + 1w, denote the
sum eff2m -+ 1) o’s of which w, is the middle one. Then it s
Peskible to find combinations of these operations A and [ )
..vﬁf\hmh, when dilferences above a certain order are neglected,

.“\‘f',’inerely reproduce the functions operated on; so that we have
N {eay)
A ST Tttw=1, + high differences.
We now take A, [ T, to be the graduated valne of #,
that is,
u =8, [ Thw,

the merit of this %, depending on the circumatance that

* This form iz due to Hardy, J.I A, 32 {1896}, 7. 372
t On Summation Formulae cf. G. T, Lidstone, J.7. 4. 41 (1907}, p. 345
49 (1908), p. 108.
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A, [ T, imvolves a large number of the observed »’s, whose
errors to a considerable extent neutralise each cther and o
produce a smoothed value w, in place of 7,

In practice, instead of the symbol A, it is generally con-
venient o nse the symbol of central differencing 3, where &,
demotes 7ty — Qi+ 1.y, Writing E =%, we have

R=E~-2 F1l=-4 gin® o,

“go Lthat
T R S L A N
N/
N A s PN X 1

—{1+2cos2p+2co8dd+. . .+ 2cos .‘Zm(;;)z%.oma\\\}
_sin {2m+ 1o ¥

L,
gin ¢ AN
and therefore x\ ¢
$in ndh O
Bl =——— o\
[aJto sing ° o
¢ oa(n—1% . nimh= 12)(n2 - 3% . A
= !l?a - 3[—)—sm2 ¢ -:—;ir‘-.——g[(— —lgintd-. . .}-uu
Tz i O 2 {2 &
or | %]-ax =k .ﬂi:’ 1‘2’321;- + (—ﬂ—_]—)( ? _—3—)84HO +
L 2 0 2t.51
~~.:’~‘ T 2 — 1 .
This showthat tﬁlﬂ[-{—]% =1+ 2y 5% —)8‘3-1{.0 + terms in 8%,
W p-g.T

ey, . imé therefors o swimmalion fm'-m-'u-la., correct Lo fhird
dbﬁ'mﬂ}r&\:'js

A\ ,_rllgltr] {1 (-1 52},“_
NS 1;_0 =2 o o
o\ . q.1

; o~ .

Tsking any two formulae of this Type, and eliminating & we obtain
suminiation formulae of o type frst jmntroduced (but otherwlse demot-
sirated) Ly J. A, Higham, J.J.4. 83 (1 8R2), p. 385; 24 (1883) 1 4d;
25 (1884-85), pp. 15, 245.

Formunlae eorrect to fourth differenc
metliod.  The use of a formula correct 10
systematie distortion of the resnlts. ]

Tt raay he remarked that formnlae sueh 43 Woolhoner's, which are
baseld on interpolations, may all be reduced to the summation type; but
the converse is not true, so the aummation method is the more general.

e may be dednced by the above
too luw an order Ay lead to
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144. Spencer’s Formula. — Perhaps the best of the
suinmation formulae of graduation correct to third differences
is the 21-term formuls of Spencer,* namely,

»_[B15]17]
Yy = % %][—7 (1452,

This may evidently be obtained by faking p=35, ¢=5,
=7 in the preceding formula. We shall now obtainits
expanded expression. If we perform summation byA7’s" on
2l -4 -3 -1 or (- TP+ B+ 2+ H-1-F ~%), we ,o\'bta?n

- '\“f -
—ES - EF + 2B+ 312 3E+ 24 SE-1 1 3K-2 4 2E:3—E-5 K-8,
N\ 3
and if on this we perform summstion by &'s t‘\vi'i}ie, we obtain

~EW_ 3E® - 52 ~ 5H7 - 2K + 615 4 1 Qe N + 4762 57TE
+60+57E2 +47E-2 1 33E-% ¢ 1:8554 + 610-5— 3E-¢ -~ FE-7
-5E8_3E-9.F-v RS

Spencer’s formnla may therefgra be written

!

%, = ﬁb-{ﬁ(}uo + 5?('ea_lv+;?tt;)“+ 47(_y + 2y) + 33(e, g+ Hg)
F LBy ug) kB vg) — Aoy ) — Bl + 1)
- 5(%“8 + ) _..3{?{’—'9 +tg) — (u T
or ~
Uy = 0-17Tuy + @\iﬁ‘}(ﬂl +tg) o+ 0134y + 2} + 0-094(uy + 1)
F 0051 {uhu ) + 0-017 (105 +2_g) ~ 0-006 (s, + ¥_g)
= 0-0kdely w0 ) — 0014 (g 4 . ) — 0-009 (7 + u
~ 0, QQS{-um Tt
\Rﬂ“\bhe practical application of the formula we form bhe
‘ex'ﬁtession

g

N

O Hmtty oy 4 Qg g - ),

sum by 7’s and divide by 7, then sum twice by 5%, dividing by
5 each time,

The following is an cxamplo of the working process of
Spencer’s 21-terin formuls : T

¥ This was employad in the graduation of the rates of moriality exhibited
by the Manchester Unity Experience, 1895-97. Cf J.7.4. 88 {1904), p. 334 ; 41
{1907), p. 261,

T J. 8pencer, J.7. 4. 38 (1904}, p. 239,
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' 3 a]le|loleoleoio |l o (10
| Gradnated
P ividoi ;. L. 2 fu=5U1 10
2| by 7 b RO IR ORO é‘,}:} pivide S?‘}}a’:b ¥ cutting
far az
| NIeCERLaTY.
20 62
1 58 181‘239-
4t 000429 | 81 | 1791240
30000422 . 60 | 19% | 257 128129
4| 00330 | 76 (208|284 | 128 155
251 i 72 | 2142861 136|150 R
6 g6 | 200|275 | 140|135 | 997199 O
7 71 |212 |2e3| 160123 1034|207 AN
ol noosze | 75 | 226|301 157 | 1441043200 1055 ol )

2N\

00 o-0056% | 80 | 2391319 | 158 161 10801214 | 1104
a0 | 000387 | 84 | 249 | 333|167 | 166 | 1130 226 (1154 0582 |
1] 660395 | 85 | 261|346 (182 164112231245 3220 | 00614
g | o-0064T | 92 | 273|365 | 1891176 | 1302 2«8{)31294 -N0648
a| oo0689 | 96 | 205 (391 ( 195|106 13754296 | 1370 -00682
4! 000746 1107312 4197208 | 216 B0} 288 | 1438 | -00716
5| onoTen [ 1091327 | 456 | 213 225, NP8 | 302 | 1501 | -00749
g1 0-00TT8 | 111|338 1449|215 234~|.1566 3131|1559

v| so0ma8 118|350 | 468 | 238 @80 1616333 1620
81 0:00846 | 121358 | 479 | 246y 233 | 1667 | 233
a1 D-0NR36 | 110 | 3711490 956 | 234 | 1745 | 349
3] 0-0NG16 1131 | 387 | BN 272 | 246
1' 0-00056 157 413 &80 | 283 | 267
2| 001014 | 145 | 45364581 | 280 | 301
3| 0.01076 | 154 4617 615
41 000134 | 162771 633 .
5| 001124 L:m.‘t ‘ ‘

_.______________________——

145. :Eﬁﬁation Formulae obtained by fitting a Poly-
nomigl>—We shall next consider & ¢lass of graduation formu.lue
}y\hit}l’lai’e baged on wholly different principles from the gammation
\{oﬁfhulae. Supposing the ungraduated values #, to he plotted
ag poinls against the corresponding values of &, we shall. fit
8 parabolic curve of some assigned degree f to the points
(s M2y v v s Mg v o o 2%,), deterwining the constants of the
curve by the Method of T.east Squares, and we shall then take
the ordinate of this eurve atz="0 as the graduated value of 2,*

*(f. Sheppard, Proc. V. Int. Cong. (1912), (if) 348; Proc. LM.8® 13
97: J.7.4. 48 181, 390, 49 148; Shepriff, Prot. RSB, (1920) 112; Condom,
Calif. Publ. § (1927) 55; Birge and Shea, ibid., 67
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Let ns then find ke polynominl of degree §,

wp) =eg b et L ote ed,

a

2
Jor which 2 Jlu-}_, -l p}} 18 @ mindmuin ;. then «(0) vl be taken

p—-n
to be the graduated value of u,

The ecquations of condition to detcrmine ey, ¢, . ., 4 ars

T Lopa g omi v d s
|1’»‘0 YT P R 1
: a7, — 2 2 a1 — a
lagtefn—T1 +e,n—12+. , c+en—-1Y=u, 4 O\
. SA
s : o i — {
8= R+ ent — . L 4oy~ m)i = U\,

If we now form the normal cquations, it is evident that the
coefficient of «; in every alternate equation V@g‘iélf‘t&sj the sums
of the odd powers of the natural numbers fromh &' 1o + e being
z0ro.  Let j=2kor 2k+ 1. Denote by Slasimmalion cver tle
values from —u to w inclugive ; let Ss L denoted by x,* and
leb sy, which is the pth m.om.en.{,s\fja devoted by M, Then
the normal equations which involyex, are

ot oSt o knty =M,
Cog T CyZ, . S euZyir =M,

CoZe + OaBpy 3+ o . T ¥y = My

Solving these eg@ions for ¢, we have
.’\:,' a 312 e I\’l—gk

A !Sg El LRI E"2@54—2

9, E{l EG R 22};4_4

< .
Zopas o 4. Zgg

Zo Zagyz - .. S
* From § 69, we note that the sum of the pih powers of the natural
Briubers feomy - % to 2 inclusive (where ¥ s an even number) jg given by
e R N 1
it pp » f— 1% (o — B
=g| T PR e _PE-T) -2 -
2[;:-.—1 Pyt pBerT - Bgn#=?

{0 — 1 — D — & - .
JEE DD -8ty ]

it
whero P"J'_‘%'-' 132:!%! B:i:-i:'ﬂs B4="3‘U= ]3.’1:_{5‘%} e



GRADUATION, OR THE SMOOTHING OF DATA 293

This iz the Gradueated Vilue of w,—Since the moments M,

M, .

. ape linear functions of the ungraduated data «_,, - -

"

u,, We s3e that the graduated value v, is also & linear function

of these data.
The ioflowing table is useful in performing the cowputations.

7

R

\
3
| 0{&
R :\Q S o’
&
b
BN\

[ TABLE
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146. Table of these Formulae.—By substituting par-
ticular nunibers for 2 and » and evaluating the determinants,
we obtain the following table of the graduation formulae which
are obtained by fitting a polynomial te the data.

Cuse . =0, 1. filting o stratght line to the dato.

Wy = «).-m{“'o O S T B T L T B S
A
Cuse TT k=1, 4.0, fitking o parabola of degree 2 or 3. The ,
general formula in this case is \)
'\
iy = Poit F Pr—noy o o TP oabon A
N
2 3024 30— 1-E5& X7, \ N
where po=3-

Gn D@ DT o

This gives v

=1 1{0“7'0 ¢

n=3 g =g 1Ty + 120w, + 1} — 3l My =ity — SNy

n=3 'fﬂ.;— STy + 6wy + e y) +3(u2-| 11“2) sty + 2 _g)}-

n=d ) =g kyid0uy+ b{u, + udl)-y39(:f 1) + 1d{atg + 2 g)
— 2 (g o R 0N

5{89?10—1-84(1&14—%_1) B {1ty + 2 - o) + 4d(ug + 1)

n=d =
_[_9{,”44_%‘4) 86 (g + g}
n=8 ) =1la 1257, +%4 Phey + 10 _q) + 21 {utg + 20 o)+ 16{ug+73)

+ 9t o) =~ 1L{tg + 4ol
TR W 3. 7% +162(u1+ 1)+ 14Tyt %o 2)

=
I
1

_LT l
C + 122y + 2 _g) + 8T(2 o+ 4205+ )
~{ —1%(1! +w_g) — T8y + 1)k
a8 g lABu, A2 (g ) B0yt )+ Hlitg + 1 g)
N + 271y + 2 g) + 18 (e + 2 )+ Tlg+ g
o)  Bla+ %)~ 2L g )

%‘\\:\'9 9y = grr12094% -+ 264 (e +1£_1)+249(1&2+-n_2)
+224(1£3+fu_3;+189(:f Fau_ )+ 144 + )
+ 89(u, +u_g) + 241, )= Bl{ugt g
~ 138(1y + %5}

{3292, + 324y + - )+ 309w, + o g)
+984(¢r o)+ 249{ny T+ 204wy + v s
4 149 (g + 7 - o+ 84{n, e )+ (gt Wog)

— T6{ug + %) — 171 (g ¥ o)

n=10 ’HD o
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Case 111 Jr=12, i.e. filling o porebola of degree 4 v 5

B=2 wy=1u,
=3 uy =ghy{18Luy+ Ty 4 w_)) ~ 30(ry+20,)
+ B+ g
m=d = 3w {1700, + 13500, +w. ) + 30(u,+ )
= BB (gt g) + 1 {u, + . L
=5 wy =3 {143u + 12000+ u_,) + 60(ay + 2 _,)
= 10{ug + 2 _y) — 45{uy +v_,} + 18(a, + a2 JON
ty = waa1 107 Ty + 600(x, + u __1) + 390(u, I %oy} AN
+ 1100ug -+ _g) = 135w, +u_,) — 1980 ¥ w..)
+ 110¢e, + 2 _ )L G\
n=T g =gl gp{110€32%, + 10185, + 1 _,) HTE00 (e, + 0 y)
+ 3755 {u, + '”-'—3) - 165, ‘t,f;\“;)
= 2937 (ug + u_ ) — 2860(13;; o)
+ 2148 (e, + 1)L
Uy = 518830, + 820(?! + g 11\- B860(uy + 11 _,)
+ 415ty 4 a0y MBS (ay + 00 ) — 115 (ef +ar )
= 2600eg + G 195y + ) + 195 (wg + 05 gk
=9 =, L1393 + 1°>U(ff + o)+ 11100, +u )
+ 790(1¢3+u_%) FAOG (e, + 2. )+ 1802, u_,)
~ 2900, + 2% _ o) = 420{u, + 2. ) — 2350 +u_ )
{‘h)(u + gl
n=10 u, = @,LJAOU??{O +4)120(w ey} ok BBOBO, + )
1—28190 H.% At _gy - 15 G)d(?’ri +at_,)
x~ 4 6378wy + w.g) — 3940(u, +u_ )
= 112200, +w..,) — 13005 (ug + w_ )
= 64602y + g} + 11698(ny, + 1 _ )k
\147 Selection of the Appropriate Formula.—Among

3
I
o

x'\

Lhe many formulae of the last section, we have to determine the
() "one which is most appropriate to the particular material that is

to be graduated ; this may be done in the following way:
From the formulae of § 145 we see that if we tried to fib an
ordinary parabola 5 = tg + 0% + 0,22 to data u

A . - - ;1{,%,
then we should have

-n? =nTI:

CoZp T 6,2 = M,
€Sy F 6,2, = M,
and therefore e, = %M, - 2,M,

s il



GRADUATION, OR THE SMOOTHING OF DATA 297

Now ¢, is $A%, where A%y denobes the sccond difference of ¥,
which is of course constant since ¥ is of the gevond degree n
S if we try to represent a certain stretch of the data, say from
w_, to u, inclusive, by an ordinary parabola, then the most
probabie value of A% for this parabola is

(M, - S Mg
3%, - 2t

This s readily celeulated (the T's being given at once by the
talile of § 145), and thus we can make a preliminary test of the.\:\'
value of A% for curves roughly fitiing the data in differefl)
«stretches” This enables us to judge what is the lowestyorder
of patabola which will give & satisfactory fit when we A5® solne
definite number (25 + 1) of data in the graduation $¢T ula.

Euo 1—If u st of observations yp Yo - - Y CQTQS}””MET'?W fo equi-
distant valuse of the argument &, 15 given, and 4f we g '?\eseﬂ-ﬁ these as well
be by @ formul of the type y=4Ax+ T, sqcthut Ay ds constant for

14 :l[')

the gradusted velues, then the mast probable valghdf hin constunt Dy @
f; . ’:.“ o

'ﬁ-{'l?.-z — l_‘r" 1 * 3\

i1.0n— 1l = 200 — DAy, + 3;{-ri:;i':§).ﬁ-y3 B V1 U

En 2—1If @ sef of ohservatipfiNgg, ¥p » - o Yo corresponding Lo cip i
distesnt walues of the argumsgbt‘}, %s yiwen, and if we represent these a8 well
s pessitle by o formule osgﬁ{vtgjpe g = Aa® 4 Brt 0, so thet &2y i3 constant

e

for the produated furc-E-u-es,- » the ot probable vlue of this constant Ay s

—_— —'—30”—: — =xiplpt+ 1) fn—mn—p— 1382,,}.
?1(%3:4\1 Fyint — 2%y
'n\:' ] . ]
Fom, 3N st of ohservations Yoy Yp o - v Ym corresponiing fo e
distant ?;amcs of the arywment o, is given, and if we raprasent these @3 um’l
s possibie by o formude of the type y = Asd+ Bk + Cu-+ T, so that A% 4
‘W-éﬂh}t Jor lhe graduonted peelutes, then the most prohable walue of Hhae
“‘Q’J‘latra-ﬂ:ﬁ 18
o 140 o
nin? — 1% in? — 2% {n? — a%
Siplp+ 1{p+2) (-2 1) {n—p - 2%
o
148, Tests performed on Actual Data.*—-We shall now ponsider

the relutive merits of Summufion forpalae and Teast-squard forrluulae
a3 tested Dy iheir performance when {Lpplied to delinite purnerical data.

* &l evriff, foc. it
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We have fiest to decide what is to be aceepled as {he measure of good
performance in a graduation. The test we ghall use may le deseribed
thus ;

Consider some known analylic funetion of , sneh s tug @, of which
tables acemate to, sy, 6 places are availalle, A 4-place bl of thig
function may he prepared by oritting the last two digits fwlich will be
ealled the fgif) and « Joreing,” d.e. increasing the last reluinsl digit hy
unity when the omitted tafl begins with one of the digits 5, 6, 7, 8, or &,
We ean regard the valnes of lug o given Ly the 4-place table as affected
with errors” namely, the erzors which have Deen prodiesd Ty tufbicting
the tails, Let us now take a sequence of these 4-place valies, aud
graduate them by the graduation Tormula which is to he ‘i’éat}d; the
effect of the graduation should be to smooth out the errovd ™ehid restore,
10 some extent at least, the more seenrate values of the #lplace table,
The success with which this ig parformed may Le takty as 2 wseasure of
the merit of the graduation formula; for it mustg b Mremembered that,
the purpese of a graduation formula is Precizely\gS\reduce the magnitude
of accidental errors,  The advantage of nsinga kfown Fanction, such as
log =, for the test is that we ean be certain that the crrors {viz the tails)
are accidental, 7.6, non-systematic. Tepe! a3 however, the disadvantage
thut the crrors do not obey the normahlaw of frequency, sinee within
the limits + 05 of the Jast place, tige Probability of an error ¢ does not
vary with e o\ o :

7111 the following tabls this methol of testing is applicd to the funetion

57— 29,9995, Spencer'y 359’1*’1111[1& and the Least-square formula %=1,

M= 10 are used, Themmcri't-ﬁ of the graduated values are olitsined by
comparing columns 210, and 11: the result is that the sum of the
squares of the residug) errors ix 873 when the Least-squate formnla is
uzed, and 1327 v Spencer’s formula is used.

[TABLE
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QRapUATION or TAK RECIPROCALS OF Nroupees BY SPENCERS FomiiLa
asT TAB LeAsT-8QUARE Fomdurna k=1, n=10

Graduated Yalue Differenes hetween Lin-

)
=1 Lyt
& o =i's gradluaiod and Graduaied . (U—n2,
= . N —| T aud True Valuesx 168 v
Mo, B By Least- .,1-
# G square By ||—— V1 -'DE _
2 Forrnula | Spencer’s Cal. 2 col. o | col. 2 o2
™ i ol 2- - .2 il T2, 0ol 5=
“é k=l [Formula | Fois 0ol e | ool s {Col. T2, |{Col. 8)

=10

i4} i5) i) (7 15} o {10} {11}
N
(N
Sy T
Ny
. .(,“«
[208 | 8543.71 o\
207 | 830923 o\

208 | 807697
200 | TA48.54 | TE4T

210 (7619101 7o18| e NP
211 | 789347 | 7303 ) 7595.36 | T402.20 41 5| JEN|"1631 25 14
219 [ 7180.56 | 7170 | 7160.80 | 7168.78| —14 i & 196 | 36 | 169
215! 6043.41 | 6048 | 59458-54 | BD4B-26 41 NS 1] 1481 49 225
214 | 6720.02 | 6720 | 6728-98 | 6728.14 2 Ny 8 4 g1 64
918 | 651165 | 6512 | ¢511.63 ] 6511.64| ~82 [\ 7] 4 |02 ) 2 18
216 | 620435 | 6208 | 6206.31 | 6246.36 85 v | -1 | le2b 18 L
217 | B0B3-00 1 4033 1 B082.9F | 608300 ey 1| -a | 0 1 25
218 | 5871-61 | 5872 | 87168 | 587160 | w80 3 -8 | 1821 4 6l
2101 BRE1H § 5662 | 66215 | 5662-28 | S\Id o | -8 220 " b
990 | 545460 | 5465 § 5454464 | 5454-6FN, - 40 .4 | =7 | 1600 16 i_}
221 | 5248-072 | 5240 [ 5248.97 | 524807y - 8 -5 -& 64 25 25
992 804510 | 1045 | 504514 | Bodoyl | 10 | -4 | -1 180 16 1
423 | 484310 | 4813 | 484310 hdBdR08 10 0 1| 100 0 L
229 | 4642.01 | 4643 | 464238 | 2642.88 | - Y 2 8 8 9 3
o | 4444 | 4444848 144446 49 | 3 3 j 2401 9 o
1948 | 4OlTE0 | d247.70| - 16 4 5 | 266 16 o
‘-10:'13 Ghs.sd | 105286 — 9 i 5 81 39 e
336NIE6.59 | 3850641 - 30 11 6 | goo g 121 i
B8 5665-08 | 806810 17 g 7| 289 13_11 a0
WP3 | 3478.19 | 3478.23 a1 14 g | @981 | 14 6
3000 | 988.98 | 2200-00 9 10 By &1 100 o
232 | 310%50% 3108 | 8102-44 | 3103.40 50 6 10 ‘:zgon 33 %
283 | JOIME0 | 2079 | 901847 | 201841 | — 50 3 9 | 2300
[ AIMATHE.00 | 9785

A%‘ze-sssm 253 ... I
259207298 | 2878 ..

237 2104.14 | 2104
238 | 2016.26 | 2017
230 | 1841.05 | 1841
240 | 166872 | 1667
;3-—11 1495.8% | 1194
242 | 1322.36 | 1302
23| 1152.81 | 1152

Total for colamns §, 10, and 11 . .| 13T

(¥ )
=1
P
—
i
[B=]
|
L

U
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149. Graduation by Reduction of Probable Error.—The

graduation formulac which we have obtained by Htling poly-

nomials have been derived otherwise by W. ¥, Sheppard,* who
approaches tho problem in the following Wiy :

As before, let . . . Mgy Moy, Uy, Uy, Uy, o .. be the ungraduated
values of ». Suppose that the determination of cuch of these
18 subject to the probable error e. If the graduated x-'a]u\e of
, 18

f : ay - T . 1 23
Uy =Pgllg Py F PG+ Loy, R\,
. ) N
R e R I o (N
. ".}‘0
then the probable crror of ) is o\
&

ALY\ o
(p_n2+_3')__n__!_12+. . _+23,”_12 ‘1";5_.”'1,;2)%&

Sheppard lays down the condi.t-iqni‘ﬁlﬁt tHhis guantity is to be
@ minimum, subject to a furthex edndition which secures thap
the graduated values ghall not “iffer systemalically from the
ungraduated. This laiter ggﬁdi;tion he takes in the form that
Uy 18 o differ from w, onbply differences of wy of order (5+1)
and upwerds; this aniqﬁrit.s to supposing that the (j+1)th
differcneos of the #'gare negligible.

Now, by a ’gli@}ussion resembling Laplace’s and Gauss's
Lheorio, ComPigntionis proof of the Method of Leqsh Hquares
(§ 115), we gte that Sheppard’s conditions are really cguivalent
to the 'hw'o"bondit-ions which were laid down in §145; and
héDGE}t\{}bé graduation formulne obtained by this wethod ave
wWeBlionl with those wivich have Boen obfained (§§ 145-147) by

Hbidng polynomials to the data by Least Spueres,

8% 150. The Method of Interlaced Parabolas.—A wethod
' of graduation proposed in 1922,% which yields satisfactory

results when applied to actuarial data, may be explained as
follows,

* Proc. of the Fifth, Tnt, Congress of Mathematicions {Cambridge, 1212), il
P. 348, and other papers quoted in the footnote, p. 291, A. O Aitken, Pros,
EBoy. Soc. Edin, 58 (1932}, p, 54, has solved the problem of polynomial
gradnation by uze of orthogonal pelynomials, obtaining a process which is
decidedly preferable to those of Sheppard and Miss Sherrify,

Td.I1.4.43 (1922}, p. 92.



GRADUATION, OR THE SMOOTHING OF DATA 301

Let = polynomial of the third degree

w4+ Do + 0o 4 B ()

be determined by the conditions that (1) it is to take as nearly
Thin b1e vAlues 2, U _mady -+ o Yog Mo U - o o Yo when
a—2,0,2,.0m respestively,
and (2 it 1s to take precigely the values ' _; and % when
has e values —1 and 1 respectively. Here a8 usual ug 1, o N
. denote ungraduated values and 2, u,, . . . denotc graci-

ated values, so that we are really finding a parabols of the Lhirg\",\
degree which will fit as well as possible the ungraduated Jate
T S and will also fit vigorously the tﬁ'ﬁ;@‘é{i‘ﬁdu-
ated values 2 _, and 7%, which for the moment a.rme'\Stipposed
already known, Then the prdinate of thas parabele at o:= 0 il

B tefon fo be the g-;-a.c?-u.a.teri walue - Thg, g@duated values
will thevefore be given by a series of interldce parabolas, each

of which passes through three conseculive, praduated valaes, 50
thab sach suceessive pair of these p;gr“ab“(’)las has two points on

the graduated curve i1 COMMOD e The equations of eondition
are evidently N

S

= gNDT + 6%+ A (2)
R :

for w= —m, —m+1, \,3— 2,0, 2, ..M and we may without

error include 7= -1 and #=1 in this sequence, singe the offect

of the two cqx{drti’c)ﬁs of condition thus introdueced will be

nullificd by,$he “iwo equations which have to be satisfied

1-ig0r0u51{;,”gﬁmely,

O ﬁﬂ’_lsfa-b4-c—d] 3)
AN u-l’=r.r,+b+c+r2'[
a\¥4
W T herefore b0 choose
Deuoting as usual X 7 by S,. we bave therefore 0 s
gy =N

«, b, ¢, 4 so as to make

k3 5
S (prbrradt drd -, J?
¢ =i
or
— 2, ~ pIndTe

= o <3
— 2 - QAT

%5, + 25, + 020, + P Tg ey, + 2043,
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a minimum subject to the rigorous equations {3).  The normal
equations are therefore (§ 108)

W20+ 2y ~Zu, + At p == 0]
f}uz-r((’\ —Zu‘! At =0 (:U
gt Xy = 292 + A =0
dZ, + FJL. — Wy H._J,—-/\-r‘r.r,—-OJ

N\
The unknowns a, b, ¢, d, A, 4 are to be deteriuin ed\rom

equalions (3) and {4), Eividently we need only uun«l‘d‘el the
equations which involve a, ¢, and (A + #+}, which LLI‘L,\\,
N
W+ = 2 D, p \ I
(v
g+ 62 = Z0, o (A p1) =0,
624+ 2y = %%+ ( —r\@ 0,

and we have also Uy = é \ &

Eliminating «, ¢, and (A )@ tom these four equations, we
kave R
v MR ) 230 1,

e N\ ) 2 ; -
Thus if we PLie cosd for = —g—-\ S50 and K for

25 N\ ‘
(}2_ _l,ﬂ“f’; the graduated values of u, satisfy the linear
4 Laat
differonge: équatwu

\.\f War1 =208 62, + g =K,

.H}e golution of which is
N
,\’“\ )= A cos wf + Bsin £
K o 576 + K 18 (z-1)d+. . .+K
sin @

Com 131118

where A and B are the conslants of integration; they may be
used, in the case of mor tality data, to make the deviations of
the acfual from the expected deaths, and the accumulated
deviationg, zero; or in all cases they may be used to reprodnee
the moments nf order zero and one, of the ungraduated s
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151, 4 Method of Graduation based on Probability.*—
The methods deseribed above fulfil their purpose of smoothing
out irregularities from observational data in a way which is on
\he whoie sfficient.  From the purely thooretical standpoint they
are nob altogether satisfactory, since each of them contains
arbitrary or empirical elements whose introduction does not
appear to be logically necessary; .. in the methods of §§ 142,
150 it is not obvicus {apart from mere convenience) why we

should fit parabolic curves to the observations rather than fit

curver puch as (say) N

st g o
y= cw*w(l +E) . N
7 {"

In srder to find a sounder basis for the theorf,;.\v.'e must
remember that the problem of graduation belongs" essentially
to bhe mathematical theory of probability ; ~Méliave the given
observations, and they would constitute the™ most probable”
values of w for the corresponding valuedof the argument, were
it nob that we have a priovi groupﬂjé" for believing that the
true values of w form & smoqb&fféequence, the irregularities
being due to accidental causes twhich it is desirable to eliminate.
The problem is to combine(all the materials of judgment—®the
observed values and t@]a, priery considerations—in order to
obtain the “ most probable » yalues of .

Let us bhen suppose thab we are concerned with a number
#, which depe ’ds\on an argument «, and suppose that we have
» data whiellare affected with uncertainties or irregularities
duse, e‘g.,\%ﬁécidental errors of observation; 8o that when u, %s
plottedias a function of =, the points so obtained do not lie
on, az};r'nooth curve, although there is a strong antecedent prob-
Xbiiib}f that if the obgervations had been more accurate the
curve would have been smooth, We may make the somewhat

* VWhittaker, Proc, Iidin. Moth, Soc. &1, P- 63 (read Nov, 14, 1919: printed,
with additions, in the volume for 1692-28), The method has been further
imprroved by Whittuker, Proc. B.8. Bdin. (19240

t The first recognition of this fundamental principle secimns 4o have been
wade by Mr. G Ki‘;cr in the course of the discussion on Dr. T B: Bprague's
paper of 1886, 7. I.A.ozs, P 7T ¢ What ix the real objeet of grarluation? Many
would reply, to get a smooth enrve; it that is not guite correct.  The reply
slould bo, to get the most probable deaths,”
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vague word “smooth” more precise by Interpreting it to mean,
¢.4., that the third dillerences A%, ure to be very smull,

Now consider the following hypothesis: that the frue value,
which should have heen obtained by the obrervasion u, lies
between w2, and #,'+o, where o iz a small coustant number
(eg. one unit in the last deeimel place used in th: measures);
that the true value which should have been obtainad by the
observation for u, lies between 4, and u," + o, and 50 oni\and
finally the true value which should have been oblaing@yliy the
observation for u, lies between « " and u, + . LhisN¥vothesis
wo shall call “ hypothesis H” Before the ohse}j:é,b'ions havs
been made we have nothing to guide us as N probability
of this hypothesis H except the degree in?sr\noothuess of the
sequence uy, . . . %, which may be medsu¥ed by the smallness
of the sum of the squares of the third\differences.

8 = ()~ 3wy + 3oty — ) )%+ (18] Bl ¥ Buy —u P+, L
s

\ ~+ .('H'-'u. - 3?“&1— 1! + 3"”'”. —ZI. - 3!{'-11—3’)2'
3 may be ealled the mmsu-;j@’bf roughness of the sequeacs.

The theory may be ext@ﬁdefl 1o the case when the observatious arve
not taken at equidistant™yalies of the argument, by taking fustead of
B the sum of the squa@dol the third divided dillerences of the gradusted
values, 2N\

We may thercfore, by analogy with the normal law of
frequency, gippose that the a priort probability of hypothesis
His &

o0 | (4)
v\hcé“\}e‘ ¢ and A denote constants.

K\ Next let us consider the « prior probability that the

o measures obfained by the observations will be ¢, u,, . . ., 7, 00

"

d

the assuraption that hypothesis H is true.
Since the true value of the first observed quantity is, on
this hiypothesis, «, the probability that a value between x, and

ty +o will actually be observed is (postulating the normal law
of error)

Ty

| I
whero A, 13 a constaut which measures the precision with which
this observation can be made. Similarly the probability that

— T2y — g
e 1_(1 1)0_’
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[t

a value heiween wu, and %, +o will actually be obtained for the
gacond observed measure i8

hy o Tig{ug=wg

Nio

where %, i« the measure of precision of this observation. Thus
on the assumption that hypothesis H is true, the a priort
probabilicy that the observed measure of the first observed
guantity will lie between 2, and u, +g, the observed measure
of the sscond observed quantity bebween w, and u,+o, and
8O 0D, 1% A
E‘J"lh * ‘. . ‘h"n-e—nfo_ﬂ.’ “.( tBj
R
where ¥ denotes the sum \/
e i ® (g~ V2 Bt (1t~ DN CE R hiuz’,@%"_ u,R

The swins & and F enable us to exprass‘\ﬁ{lmeriea]ly the
smoothuess of the graduated values, qnd: the fidelity of the
graduated to the ungraduated values a@spéctively.

We n:ust now make use of thecfUndamental theorem in the
theory of Tnductive Probability;:\é'hich ig as follows, Suppose
that a certain observed phe Genon may be accounted for by
any ono of a certain numfl};:(a‘r of hypotheses, of which one, and
1ot more than one, m\ugb ho true: sUppose, MOTeover, that the
probability of the sth/hypothesis, a8 hased on information ‘in
onr possession béforé the phenomenon is observed, 18 Py wl?lle
the probabilityie *the observed phenomenon, oR the assumpilon
of the hrkibi\“ of the sth hypothesis, is T Then when the
Obﬂervaﬁén of the phenomenon is taken into consideration, the
Prﬂbft}).‘lflit_§7 of the sth hypothesis Js

' pPe
Sply
where the symbol = denotes the qummation over all the hypo-
theses. Tt foliows from this that whereas be/ore the phenomenon
wag observed the most probable hypothesis wags that for which
P: Wag greatest, the most probable hypothesis after the pheno-
renon has becn observed is that for which the product P, 18

groatest. Applying this theorem to the case under con;sidera-
v 1
(D 311)
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tion and combining expressions (A) and (B}, we sce that the
most probable hypothesis is that for which

chy Iy s z’a-.,_,b
()"
@« mazimum ; that is to say, the most probable set v L L a,
of vabues of the quamtities is thal which meaies
A4 F
+ A, ¢
& MARLINNL. O\
152. The Analytical Formulation.——\-\-’rit-i,g’;,}’; down the
ordinary conditions for & minimum, we obt-a:iu“f;l‘m i uabions
S

o .-\ES—F‘O,EH.

N

2y = D2yt N2AR, )
by =Ry 1" — ARAR S, R&
B, = Regiuy| + BA2A%y, - APAR) &)
fesPu, = fegPitg — BAPASL + 3AZAS NS AZATy
Py =hu ) + A%y — 3;\2;\\31(;‘ T BAEAR — A%y
fentten = P2, + NA% | QD
TR Y

We shall now make the sitiphifying assumption that the measure
of precision is the samg for all the data, so Fg=liy= L = h

If this is not the eage, “wo eraduate some funelion of 2, weh s log w,
Instead of 1, c}iooﬁiug\this lunction so hut ita 1ensure of precision has
nearly the same Malbe for all values of the Argument.

I we writs }12 =A% the equations may now be writben

o W/

£/ -~ = ! o f

N &y = eny — Ay \|

N ety =euy 4 Bady ! - Ady,) |

2\ gt — ear 3y f QAR T AR I
O €ty = <ty — 300" 3+ BA%) — A%y, . (1)

’ i LT
O €ty =€ty + A~ BA% 4 BABy) — A%y r|
™3 . . . . . . .
o)

€l =eu, -+ Al o J

Now all these equations, except the three first and the three
last, are of the form

€ty =en, — APy’ _q

Moreover, if we introduco g fquantity 4, such that A% =0, the
third equation becomes

ar LAY
g = ey — Aby S,

which is of the same forn ; and similarly the first two and last
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tliree equs 1inng can be brought to the samo form by introdueing
new quantities Wyt g Wl Wy, Wots Such that
Ay =0, A% =0, A ' ge= 0, A%, =0, A =0,
Thus ke gradueted values iy subisfy the linear difference cqua-
Hom
ety — A1 g =€y, (2)
bediug in fact the partisular solulion of tes equrdion which satisfies |
rrininal condifions

Ko N
A‘in A’!p =0, A3;_,{_’_2 =10, Ay, o= 0, Ax, 1= 0, 7\ Y
Al =0, \f?)}
whenee we have at once AN 3 b
At om0, ARy =0, A g=0, Atz 0, &2 K\«}_ 0,

A‘S? 2= 0 {4)

.. The Theorems of Gonservation.é}?rém (2) wo have

hy siunalion M ,3
el 4y +o ok} eluty Tttt - ¥,
:’Xﬁgf X FAUITA S 5 Ac‘!ff”__;
."._" Sit', “-A"IJ -2
Q= 0, by (4)
Theretore :u.\ o
thy + &\-}. g =TT T, )

Moreover, ‘ﬂy {2}
elrry + 2ug -+ )y —eloy + 20yt +?Wu)
S \4

¢ NSy A8 A PATT
A& b | i
.%%" = a\e “_Q—A‘ir{ - +A wio
A\ =0, by {4)-
| Thevefore
N’
} T Zuy A qe, ==y B oot I (6)
Next, by (2)
et
RS AN (o - e(:f + 2yt
= Aby,+ gEAsy 4. . n-_\eu s

3 oAzt AsY
— A,y - (20— 1).&% st QA i,y — D% A%y

=0, by (3) and (4)-

Therelore .
L g oo
"+ 9, +. . -t phe, =1 T Py 4. - )
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Equations (5), (6), (7) show that the moments of orders
0,1, 2 are the same for the graduated data s gor the originagl
date.  This may be called the Theorem of the Comservation
of Moments, We may express it by saying that the graph
which represents the wirgraduted datu and e stph awhdch
represents the graduated doty have the ST e, the same
& co-ordinate of the centre of gravity, wnd Hie soms dbment
of imertia about any lne parallel to the awis 6f ., A\

154. The Solution of the Difference Egudusn, *—Wo
have now to solve the central difference equation of gradua-
tion, o)

iy — A,y = elty, L &

subject to the six terminal conditions‘iml‘)osed m § 152 Let
Us assume for the present thatoe‘\\l‘g given. Ther e may
obtain a gencral solution by medns of symbolic opevators as
follows. )Y
Since A=E -1, the e(lg:-iti(;n, in terms of F, becowies
(B - 1) - ey

2 s
80 that ) \ Uy= ~¢ [(E—_l )g:c@:l-ux. (8)

&

Considﬁra}iona of symmetry lead us to expect that each 4/
will be @iven as g linear function of w's, with coefficicnts
Symm@r’icaﬂy placed about that of the central ferm. TLis
sugeests that we expand the operator on the right of cquation

=
A('%*fn powers of both X and E-% in fact as a Luwurent seriost

AWuch an expansion iy readily seen to be possible, for the equi-
N\

tion (2~ 1) - 2% - 0, being & reciprocal equation, has its six
roots reciprocal in Pairs, so that three ave less in modulus than
unity, and the remaining three greater; hence f{z— 1) -]t
may be expanded ag g Laurent series, eonvergent for z=1,
and the coefficients, with which wo are chiefly concerned, may
be found by the usnal theory. That these coefficients will be

"The method of solution deseribed in §§ 154-155 is doe to Dr. A, (L Ajtken

and was firak given in g thesis for the doctorate of the University of Edinburgh,
submitted in May, 1525,

+ Of. Whittaker and Watson, Madern, Analysiz, § 5.6,
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ally disposed follows from tho fact that the operator

i left nnaltered by the substitution of E-1 for L.

Appen) to the theory of Tunctions of & Complex Variable may be
aveided, if preferved, by having vecourse to the theory of Partial Frac-

tions, [T w

& resolve the oporater in question into six partial operators

Ly thiz theory, then, for the reasons already stated, three of the partial
operators way be expanded in powers of E, threc in powers of E7%
whenee Iy addition the complete expansion is obtained.

Ficher

namely,

of these ways leads to the same graduating fornyflay*

N
N/

= Tty + Joy (W32 U O Tl Uapat tsoe)F o W (9)

wheie ks

in which
nnity * of
change of

aﬁ?\—|-2 &l
e T T AT 1) (10)
(@ BYa—yNa—a YNa- By ")
a, 8, y are the three roots Jézsfs‘\ 4n modulus than
the equation (z—1)"— €23 -—:0,5\&1'1& 3 denotes inter-
@ {3, 7 followed by sumragpion. One of these roots

N\

is evidently real; hence we MK write them as 7y, g, o,

when (10) becomes JON
fm B P O P

where A=

A
; e ; T 1
(?“19 -2y xco?@ Y- 'r.f)(rf - 2;‘ cosb + ; ;)1 J
g, \\ i

TN\
-8

<& ,
]%ft(:'%":*?’ [;33 sin(n - 2)8 - ?'g(rl + .?]T)sm(ﬂf -1)0

O

2 &

a3
N

u\ 3 O

By means

o number of 1-epresentative values

0.25, and
on p. 314

A defect inherent in most matho
Yincar compounding of 4’s on @1

that if 4s

. 1.
+ 1 ('rl + l) sin(p + 16 - Py sin{n + 2)6],
¥y b 2

(1 -7 smﬂ(iig -2 00329-1-9‘22).
. have been caleulated for
of ¢ 0-01, 0-02, 0-05, 0-1,

1. A table of these to four decimal places 18 given

of (11) the coeflicients %,

ds of gmduation Tased on

ither side of a particular % 18
impossible to graduate the whole of @ given set of

* |t is assnmed throughout that e is positive, not sene.

N\
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doto; eg. Spencer’s formula is inapplicable when we are
within ten places of cither terminal. (See the example of
§ 144, p. 291.) This defect will also serionsly impair the
present method, unless by some means, without (.ie_pa.rt-ing
from the conditions of the problem, we can atiach 1o each
end of a given set the additional, or, as wo niay eall them,
auziliary data, wyi1, Wage, ..., and Wy Wy, .., Lhe existered of
which is implied in formula (8). (The nmmber of datg-to be
attached in practice will depend on the degree ol \r-[ccumcy
required and the rapidity with which the successiy ¢ Eraduating
cocflicients diminish) As in § 152 we intr,@u‘fif’r:en_i sIX new
quantities %y, ways, Wies, 1y W _y, 0,80 ¥et us now Infro-
duce a further indefinite number NN 'ei-’}z_+5,..., and ' _g,
w_y ..., wnder the same conditi@,j namely Uk fhird
differences imvolving g?'a..r.luateol“s‘@éa beyond the original
terming are to be all zero. Aifforencing the ndded third

differences three times mores we obtain
Afyy_9=0, AP/, 1 =0n and A% 5=0, AP/ _,=0,...,

from which, referring™again to the difference equation, we
must have 8
NN

¥ 282 5
Wt 1 = Un G @ ra = Uata. . and Wy =2y, 4y =u g .. (12)

Thus the cgndition imposed on the auxtlicry data 4s that
graductedland ungraduated values are to coincide. 1t also
fol]ow@\’t-h&t

'"\50
,‘\QEEL}AH =0, APy ys=0,,.., and Amy_y= 0, AP _g=0,... (13}

AN The difference equation (2), with the conditions (8) and

(12, or (3) and (18), suffices to determine the external data.

Tf the original number of dats to be graduated is not too
small (in gencral, if it exceeds twenty-{ive), the external data
may be found as accurately as may be required by the tollow-
ing wmethod.
We have, from (12) and the difference equation (8),
3
a, = - _<E*
R DR i
(E-1)

or s :1)7_7];:—,,?.% =0, fora=n+1 n+2,., .
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This equabion may be written

(- 1) (E-1)7

) thy = 0. 14

st BEEeE- gy
We shall show that tni1, Waie .. 850 given by the equa-

tion farraed by retaining only the ﬁrst operating factor on the

left side of (14), viz. the equation

(E - 1y B N
LA ] ={), (1.{))
- E-BE-7) “ .C\
4 Lhe first place we see that (13) g olves e umque]yx ﬁl
tern of g-1, Yz-2. ., for the operator can he pra.l;rd*ed in

descendengy powers of E in the form ’ ,\\ »
1-hE- 1—ng’ —j.B Bt \%
¢o that we obtain x:\\'
S RIS B 2+331¢¢. o (16)
for w = -+l 2+2 ... From tlm :,qu'ltlon g1y Wi o

are datermmerl in f-,u(,cc,smon pmuded that the terms con-
taining the und:,tcrmlned ~eg<’t(,ma,1 data e W-lp - BY
negligible. \
Next, the values oi ;a,x thus determined will satisfy (14);
for the operator s,
O 1)3
NOETeHE- B EY )

1s expa 1‘&1:9\111 ascending powers of 5, and theu,fcne (i4) can
be du@n&d from (15}, which holds for g=n+1, nt2,. B

L‘xstly, the conditions (13) will be satistied, for ilom (13)
\’\ {have

i @ -
& o ey B OE A Y=

since (15) holds for an ascending series of values of &

Tlence (B—1)Puy= A, = 0, for =0+ 1,nt+2

The value of , in (16) is easily found to be
gt gin(n—2 A =1y ﬂlﬂn_—_‘l\lfﬂ } 1N

j‘ﬂ: -1 N tk" J’@ u-—l_\ ——ind

- Z'rlr cosl + 1"
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312 THE CALCULUS OF OBSERVATTOWS

By means of (17) the coefficicnts Ja have been culculated for
the same valucs of ¢ as before, 0.01, 0.02, 0-05, 0-1, 0.2,
and 1. It is found that they decrease snecessively with
sullicient rapidity for al) practical purposes.

Actually only three auxiliarvy data, 1w, Woer s Hog g, Teed
be calculated, for the vest can be found, again iu virtue of
(13), by forming & difference table with zero third differgnees,
Exacily the same process may be applied to the otheistnd of
the lable by reversing the order of the data. L\

We have finally to ascertain what values ofrywre likely
to be of standard practical application, anf]..gls“r} io find a
means, given any particular set of data toobe Lraduated, of
assigning in advance an appropriate \ra-lue}f}:ori'l araung these.
Here we may rofer to the notion of & Nenfoothing coofficient”,
introduced by (1 F Hardy,* andsbased on the following
considerations. The wu’s have hebo“supposed subject to the
same probable ervor, p.say.  Thew the probable eryor of their
third differences, e.g. of 41, - Bugt 3u, - uy, i pa/(1+3+32+1),
or p/20,  But if we ha-\q{ia'gmduaf;ing Tormula

*

N " Wy = Thytty,
then O A = S(A Y,

50 that the prébable errop of A%y is pa/I3(A¥:,)%.  The ratio
A/ P2(AT AN 20 may then be regarded as measaring the

3 . . . K 3
- degroe d{<eduetion of probable error in third differences; it

'hasj\;@aﬁ’ called the « smoothing coefficient ” for the formula
m\i;,ucstion.
N\
2 8 h
AN T, 3 (1898), p. 876. The name “smoothing cocffiefent” is due to

v Spencer, Of, @, J. Tidstone, J.7.4. 42 (1908), P 114,
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[

b, i =01,
\ - ——
1§ .03

‘ 3 | o-s41
| 5 oc.sa
Cd 00963
‘ 5 . -D-1442
.6 | -0.1619
\ 7 L-0.1574
|5 ] -0.0097
‘ 5 | —0 0474
10 | ~3-0081
11 | G-0185
‘ 21 00330 |
1 | 0-0369 |
14 | 0-0334

‘ 15§ 0-0257
16 | 0-0167

‘ 17 1 0-0083
15 | 00017
5 | —0.0027

‘ 20 | —0-0049
a1 :l—O'UL'}ﬁI")
‘ v | 0-0040
93 | —0.0037

‘ 24 | —0-0023
95 | —0-0010
26 | —0-0001

‘ 97 | 0-0003
98 1 ©-0008
\ 25 | 00009
20 | 0-00074
‘ 30 | 0-0005
32 | 0-ED0%
33 | 90R0L

| 0000
25 §20.0001

| 38\~ 0-0001
L AT ) —=0-0001
\T, w5 | —0-0001
25 | —0.0001

‘ 40

TapLg or CoRFFICIEKTS ju
S _
| e= 02, e=(-06, l e=—0rl. e=0-25 =1
l. 1.0237 | 1:1847 \ 1.83260 | 1-5204 | 1.8618
04337 | 0-38121 0-3082 | 0:1623 § —0-2545
00626 —0 0600 | —0+1750 | —0+3468 | —0-5842
41293 | —0-2297 | ~0-2065 | —0-3471 | — 02660
Z0.1917 | —0-2309 | —0+2204 | —0-1700 | 0-0302
| _(3.1745 | —0-1542 | —0-1060 | —0-0075 |  0-1257
_0.1189 | —0-0633 | —0-0027 | 0-0731 | 0-0889
_~0.0679 | 0.0068 | 0-0531 | 00810 0-0276 N
_0.0065 | 0.0452 | 0-0854 ) 0-0523 — 00097
(- 0268 {0048 0-0512 | 0-0189 | —040156
0-0118 | ©0-0460 | 0-0281 | —0.0031 L08R
p.0425 | 0.0203 | 0-0078 —0-0112450.0013
0.0345 | 0.0127 | —0-0045 | —0-0L0% 0-0020
0.0225 | 0-0005 | —0-0081 | (0053 00019
‘ 00114 | —~0-0060 | -0-0083 | —Q¥B11 | 00008
0-0024 | —0-0079 | - 0-0002 \\0:0019 0-0000
—0-0034 | —0-0067 | —0-00 00017 | —0-0003
_0.0060 | —0-0043 1 Q¢ 09% 0-0012 | —0-0002
—0-0083 | —0-0018 | QD3 | 0-0003 —0.0001
~0.0051 | 0-0000 [ 0014 | 0-0000
— (004 O-OUILL 040010 | —0-0002
~0-0017 | 0-001Y " 0-0005 —0-0002
00810 | ©-0001 | —0-0001
0.0006 | 0MQ007 ‘ —0-0002
3-0010 <N -0003 | —0-0002 ,
0-0010 ¥ 0-0000 | —0-0002 ‘
0208080 —~0+-0001 | —0-0001
05@5@5 —0e0N02 | e .
79,0003 | —0-0002 \ |
) ML O000 | —0-0001
0. 0001
—0-000%
—0-0002
—0-0001 \
— (30001 ] !
| |
I \ ‘
________L__._J
Formula for extrapolating axiliary data:
Uy =J(thnir-1 TFe¥nr=2 +fgthngr-s e (r=>0
11*

[§:1300
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TaBLE oF COEFrIOTENTS oy

T — ————
[ e [-01 ! {02, £= )5 {1 e= {25 e=1

0 -1570 061769 02076+ 0.2347
1 01482 0-1644 01873 (=2056
2 0-1254 (-1328% 041397 0-T412
3 00948 0-0028 | (-0812 0:0721
4 G628 00536 001359 0-0181
)
6
i
8
9

0-0341 Q-0218 0-0027 | —0-0110 | —0-0230 ) — 8.0
007 | —0.0004 - —0.0145 =0-0211 . —0-0411 i 00058
= 00035 | —0.0125 | —0.0191 - 00186 | - 00108 p {00032
= 00119 | 00165 | ~0.018] —0-0110 1 — 000 AN, "0h 0044
—0:0148 | —0.0181 | —0.0099 — {0035 ‘ O-00N  0-0083

10/ —0.0138 | —g.0110 —0-0038 0-0014 ULG085 1 (0-0003
1T 1 —0:0108 | —0.0nG2 0-0005 0-0034 | AW027 ‘ —0-0008
121 —0.0070 | —¢.002] G027 00033 |2 QF00T5 | — 0-0005

P13 [ —0-0024 0-0005 00032 O+ 00227 N> 0000 | - 0-0002
‘ 14 | —0.0005 G124 0-0026 0-0808N- - 00005 G-0000
L& 0-0014 0.0028 0-0016 O-00g8 | —0-0003 ;  G-0001

" 16 0-0023 |\ 00025 | 0-0006 | — 93004 | — 00003 {0000
17 00025 G-0018 | —0.0001 = L0M0005 | — 0-000]
18 0-0022 | 0-0010 ' —0.000d {30-0004 | 0-000]
19 0-0017 | 0.0003 | —0-00@NY 0. 0002 0-0001 ¢
20 00010 | —0.0001 —0-0002%  0-0000 | 0.0000 |
21 0-0005 | —0.0004 | — Q002 | 0-6000 _—
232 0-0000 | —0.0004 | 40,0001 | 0.0001 ;
23 =0-0002 | - 0.0004 [N 0000 | 0-0001 | |
24| —0-0004 | —0.00085 " 0.000]
261 -0-0004 | —0.0082 | 0-0u01
26100003 | s QOO0 | 0.0001
271 -0-0002 | ©%000
28 | —0.-0001 4 \0%0001
29 | ~0-0082 {N 0.000]
30 0-0000Y  0-0001
1l ‘ -0000
32 0000
33 2070001
ﬁ\so 0001
f__:%: A . i [
0N Torimly, of graduation ;
\'\3 o Wy = By, + Byfatger + M1}t R thap F a2

Now each « corresponds, as we have seen, to a definite
linear combination, and therefore to o definite smoothing
coefficient, Approximate values arc given in the table below.

- ..l
1 ‘10 )

0.1 0.25

'1'%3

‘ ., I 001 | 0.02 | 003 !

© ‘

e ‘ T4 | T | ¥ ‘ 1 J

LT
TE™

Smoothing :
J cocflicient. 0 | e !
e —_—— -




GRADTATION, OR THE SMOOTHING OF DATA 315

Thus & prelininary inspeetion of the third differences of
a set of ungraduated data enables us to estimate the amount
of smoothing likely to be required, and to select accordingly
an appropriate value of e

155. The Numerical Process of Graduation, — The
routine o be followed in applying the preceding theory to
actual duta falls therefore into three parts:

(13 'To form the third differences of the given dala, and
by inspaction to decide what degrec of smoothing is neccssary . O
To chovse from the selected values of e that which most nearly)
produees this degree of smoothing. (53;.

(Z; To evaluate in quecession four auxiliary dataiytass
tpin, oo Unis DY Hhe formula N

Uy p1 = tm + Jagthu-1 +igtm-ates )
Uz = J1Wn 41 + fothn F a1 +\‘, e
A a cheek, the two second differehges in the difference
talle of these four added data shou}d,’:bé’cqual. Repeat these
seennd Jifferences outwards and’bi:{ll'd up the table to obtain
as any auxiliary dats as ars :’l:e'quired- Reverse the order
of the data and carvy out,"exdctly the same process at the
other end. \

{8} To graduate ‘k@,\ txtended set by means of the coeffi-
glents L. Ke
fin—To gl'a,dlzlat:b, by this inethed, the set of data of § 144, p. 291

We shall 3”1{1:3?0"50 that ¢ has been taken to be 0-25.
Then Noabiaid 15 o o _poades(lo7sy  — . =1158-5
e O oesgan(124) sy . —une,
= 1.5204(1156) +0.1523(1156+5) - 0-3168(1124) - .= 11425,
O = 1-5204(1142-8) + 0 1523(1156) ~0.3463(1155-5) - ... = 11144
\ ?l."erming a difference table wo find, as we ghould, that the two seennd

beine —14.2. Dy repeating them cutwards
v 3% {taken to the nearest

differcnces are equal, each
and building vp again we easily find the valu

integer):
- 5 U
s U e g s i ﬂ‘f e iy
1072 1018 946 861 762 649 522 330 224

2o ey

e Hen Ug1 ez
=100
61 1008

— 150 — 328 — 54l - 767
the anxiliary data i terms of the

=N . ade to dnterpret .
o attempt should be made ¥ ate the solution.

rost of the tuble, They are iniroduced purely o facilit
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316 THE CALCULUS OF OBSERVATIONS
Turning now to the other end of the table we otain in the same
manner

g =42448, wi=480.0, w,=4162.8, M= 1907,

and by a difference table (second differences all 9. 1}

Ty My LTI g L Mg Ty . e
538 BRD 619 718 797 88t 98l levy 1201
Uy [T 0y it o i )
1825 1458 1800 1352 1912 90%) N\

The final process of graduating the extended table, ;1.1a_.t1:1‘ﬂdced all
processes which, Jike the method of Leazt Syuaves and the et metliod,
depend on forming a symmetrical linear compound, Lu not reductble
b0 suceessive “summation”, are most convenieni R Slried out when
arranged as on table facing p. 316, On a sheet ef {hnipacing paper the
data to be graduated are entered in a coly mn.?-it,;\equu‘. distnnces below
each other, and to the left other eolumns of m'a'e:tly'egamﬁ wre allotted
to each snceessive graduating coefficiont, syhidh is writio at the head of
its column, The products &uu, in eacl Glunn are com nu either by
arithmometer or, in three place worlyBy Crelle’s Tubles, T raduated
value # of any # is then scen (0 ho@the sum of the entries i1 che diagonal
lines which converge in the £y colimn opposite to that .

Part of the whole conputip®'sheet is shown facin @ po 316 Tu summing
the diagonal entries, distraghion of e eye may be avoided by the use of
a ¥-shaped steneil, Whir:lq:l:caves exposed at any tine only the particnlar
converging dia gonals ¥éguired,

Cherks dur-ing‘.the computation may be provided hy cumming the
entrios in any c@‘l.pfeted row, the entry in the column under 4, being
halved. Tn Lhe\mw opposite u, the sum should be . A final check
is provided h:}h the “Theorems of Conservation ” of g_ 153, Thus in the
present exatnple we find the three imoments to be

I 18285, 200109, 5531363 for the ungraduated data,
\:"\." 18284, 280095, 5581071 for the graduated data.

A compurison of the graduaisd and ungraduated dafa and their thivd

w3 “differencos shows that o satisfactory degree of smoothin g has heon secared

without great departare From the original values,

156. Other Methods.—Tn addition to the methods of graduation
which have been desoribed in this chapter, mention should be made of
& method proposed by E. (. Rhodes, and deseribed in hiv Tract® on
Smoothing, to which the reader is referred. A memojr by C. Lancxos,
“Trigonoraetria interpolation of empirical and analylical fanctions ™,
Journ, Math,. Phys. 17 {1938y 123, may also be consulted with advantage.

*No. VI of the

Lracts for Computers, edited by K. Pearson; Camb, Tniv.
Preag (1921), ¥ n; Can



‘ 1| L 1356, 2297. 2771 . Ty e
.
111 e
111 589
141 538 e
0 (3] 496 { N\
G B 463 "\
ol o0 505 50 A | N\
69 575 @74 424 N
0 ¢ 584 990 1194 ap | 431 - 69,7418 -4
o 0 555 930 1133 1| 200 g4g\{"e2 -6
0 o 582 085 1189 g | 429 D48 | 485 -9
0 0 572 969 1169 g | 428 \Ji2 | 454 ]
1)1 Hig 3 1217 | 1469 1] sn107 | 413 8
11 a5 | 1160 | 1399 | 25 505> — 487 8
0|0 gz | 1wse | 1272 | 8y 459 23 | 496 O
0 o 677 1146 1383 w400 - 23 508 -2
1|t 713 | 1208 | 1488 | & o - 3 | 828 U
L 1 763 1293 1560 4y 9 | 963 g0 | 550 @
111 796 | 1348 | 1627} 3¢ gar - 4 | 88 -3
i1 g08 | 1367 | et 1 505 85 | 610 -3
1 1 877 | 1486 | 2193 2 | sa7 -~118 | 646 -8
111 907 | 1537 1854 | 3 gea o7 | 6856 O
11 w012 | 1714 2067 | o746 28 | 724 1
LAt 1031 | ¢ o6 | a5 | 780 - 62 ] T84
g 1055\'\1?87 2156 6 | 778 4| 787 6
i i 1123 Mooz | 2284 7 | ges 18 | 812 5
11 1M | 1943 | 2344 3 | si6 -130 | 837 -2
11 Ause | 1920 | 2817 o | %36 5% | 868 ~8
[ Nggsz | 2lo4 | 2638 o | 016 - 14 | 90 -8
1] 1 pi2ee | 2196 aaip | 1 | 956 — 8 | 263 -8
IS 1375 | 2820 | 2810 o | 1014 - 84 | 1018 -4
i \i“ 1450 | 2472 | 2682 3 | 1976 1069
LN 1538 | 2605 | 8142 4 |13 1112
TN 1524 | o582 | 315 | 4O 1124 1141

AN 1 1568 | 2656 1156

o1t 1568 1156

3y L 1 1142
17 1 1114
1|1 1072
1 1 106
11 948

\ 1 1 861
N N I A AN e,

[Facing p. 316




CHAPTER XII

CORRELATION ¢\
A
157, Definition of Correlation.—Consider a definite grotip
cuntaining & large namber of individuals; let us mecasure some
atiribute A of the individuals, and let ug also Igleéﬁﬁre some
ather altribute B. For instanee, the individudidanight be all
the siars of the third magnitude, and A might’ represent the
parallax of the star, while B might represeﬁi} fts proper motion;
or the group might consist of all adull ‘Spotsmen, and A might
represcut the height of & man in jn@héé, while B wight repre-
sent his wealth in pounds sLe;;]jijg.' Congider now the indi-
viduals in the group for whirh A lies between = and &+ ds
while B lies between y adth y +d%; lot, the number of such
individuals be N, y)dﬁ;g\ly, where N denotes the total nunwber
of individuals in th\a\\gfoup, or, to express the same thing in
other words, lot gy y)dedy denote the probubility that Jor an
individnal takef-at random the first attribute A lies between
w and =+ dighywhile the second attribute lies between ¥ and
y - dy. NO
Noﬁr\.ﬁ‘ermat’s Principle of Conjunctive Probabilisy may he
Stgi\’g& Yhus: The probability that tao events will both happen is
WK where h is the probability that the fivst event will happen,
Wnd k is the probability thot the second event will happorn when
the first event is Fnown to have happened. Applying {his to the
present ease, leb b =j{(z)de be the probability that for an indi-
vidual taken at random from the group the first attribute A
Fies between @ and z+da; and let b=gla, ¥)3y be the prob-
ability that for an individual taken at random from those

members of the group whose attribule A Les between @ anid

317
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# + dz, the attxibute B lies between y and y + dy.  Then by the
Principle of Conjunctive Probability we have '

¢, ) =gl »)-
Now here two possibilities present themselves.

In the first possibility, g{», ») is a function of v only, not
mvolving #.  When this is the case, if we divide 1w original
group into sub-groups according to the magnilude of Fhe
attribute A, then the probability that B will lie betweepydnd
Y+ 18 the swme for each of the sub-groups. The tywo ablitbutes
A and B are then suid to be not correluted, and evidetly ¢, 4)
is exprossible as the product of « function of il maltiplied
by o function of y only. This would be the qakes approximately
ab least, with the height and wealth of the Scotamen ; for lat
the probability that a man is of a certain height @ Lo 2+ do be
Ae)de; then the probability that hig;ié‘éulbh lies between y and
y +dy pounds is nearly the same ¥ontall men as for short men,
so may be expressed in the fomn“g(y)dy, where g(y} does not
involve @; and the compoysd probability that his height is
hetween  and » + di whilé his wealth is between yand y+dy
is then simply N

SN ARyl decdy,

Butina ]_argé\éldés of cases the function ¢ (w, %) is not capable
of being expressed as a function of & multiplied by a function
of . Tn such “casos the probability that the first altribute has
a measup@iﬁetween # and & + oz is not the same for individuals
with da¥ge »’s as for individuals with small #'s, and the prob-
abillty that the second attribute has o measare between y and

\U—‘ dy 18 not the same for individusls with large #’s as for
“ndividuals with small 2’5, In smch ecases the two attributes

are said to be eorrelated. Thus the parallaxes and the proper
motions of the stars are correlated;' for a star which has a
laxge parallax, and is therefore comparatively near to mus, 18
more likely to have a large proper motion than a swall one.

‘ Muny elementary probleras in Probability eanmot be solved eorrectly
without {aking aecount of correlation.  For cxample, the following:
¥The prolability that A ean solve 4 mathemalical problem taken ab

random feom 4 eevtain book s I, and the probability that B can solve
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pme i also & Whal is the probubility that a prublem taken ai random
will he solved by ene or other or both of them?”

Hers the group cousists of all the problems in the book, und the two
attribates of an individual problem are its solubility by A and its
solul:ility by B, These two atteibutes are correlated, sinee the problems
thas A cau golve will be, 10 a great extent, the same as the problems that
Tt iun goive. 1t would therefore be wrong {0 assert that the probability
of hil failivg to solve a problem taken at pandom is 3 § = §, and tlat
eouser ently the probubility that oue or other or Toth would sueeced is
1— or

N
158, An Example of a Frequency Pistribution involving (\J)
Correlation.—As an illustration of correlation, let us conside’;j\
two riflemen side by side firing ab targets when a stronggvind
is Howing. The wind will be sapposed to affect the shoeting
of both men in much the same way, s that we mhy expect a
certain amount of correlation between their records. In this
casc the “group” consiste of all the records &fythe two men’s

shots, an “individual” of the group i ouEhibuted of asingle
ghois of Lbe first man together with the &bt fired at the same
instapt by the second man, and yhe’f“attribntes ? of this in-
dividual ave the deviations of thebwo shots.

Tot X denote that part of the deviation of the ﬁrs.lb mal}’s
bullet from the mark whiCh. s due to camuses affecting him
alone and nok a,ﬁ'ectin&\@w’ other man, 4.6 all causes except th’e
wind. Similarly leb Y denote that part of t‘he second man’s
deviation which, {s;:due to causes affecting him cznly; and let
X taZ denote\ﬁﬁc total deviation of the first man’s bullet, and
Y + b7 d‘nm}é'the total deviation of the sevond man’s bullet,
where Z;’Qd"ue to the wind, For simplicity, we suppose all the
deviations to he in a horizontal direction from the mark. We
ftssﬁ;.ﬁ'e’ that X, Y, 7 are independent of each other, and that
oaeh ocours according to the pormal law of frequency, £0
the probability that

h

. =ht g
X Ties between # and @+ daz 18 :;r d,

R Y
Y o, " i and ¥ + dy 18 _J_ﬂ = ay,

T
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We now want to find the frequency of eq:
U=X+aZ hes & value between and w4+ du, angd
has a value between » and v+ o,

Suppose Z lies bebween » and z4 % which happens in the

S A .
Propertion :/—e "z of cases. Then In order to prodnee such

& pair ag is considered, X 1uust be taken between + - gz and
%+ du - ae, while Y must be between v-— 2z and 7ok d-v';\bz;

the probability of these happening together ig L\
- }ie_hz(“_’r'jgdu % - A;e‘kz‘*’_bz'}szﬁf. \ ‘~\ .
,\/ ™ T o~

7%

N
Therefore the frequency of cases in whighOU lics hetween

wand v+ dy, while V lies between o and 5, is

il . ? — U - R R 2 — oyt
etbuddp | g b Nl iz,
R —= £ &/
ar N
Rl gy SR IR o (N e A j8
—tudpe™ W g } \ o R e i dz,
w g
N
or ]_ _&;{.’i .':’" _,.uﬂhs_.uzkz_;’__(f.m_m_kh i

S PR\, 208 aSiE BRI LTy
= {0Ph2  DIRSE ’

IT we examine tl&ﬁ EXpression we see thiat it is of the form
‘i’{lﬁ.fiﬁ)dudv S oI at f 2y, oy oy

where ¢, z, #n8 denote constants. The coustant s would he
Zoro if eit‘h{’a’r}ﬁf the constants « or & were zerv, .. if no common
inﬂuel}c{ deted on the two riflemen.  The eorvelation is rEpre-
seme;{\:mcdyé-icaily by the ocourrence of this term in uv in the
e intial,  T[ this term were absent, the expression (1) could
e regarded as the product of two factors
Constant x ¢—ptg,, and Constant x e T,

of which the fipst involves ouly and the second involves v
only, so that in thig case (§ 157) there wonld bo no correlation.
The expression (1) may be regarded as the extension to two

vartables % and o of ghe normal law of frequency for one
rariable 1,

—ﬁj— & _h.uzd’i{
Ny

?
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on this account we shall call it the normal few of frequency for
to waiinbles. The constant ¢ in the expression (1) may be

deievinined from the condition that [ f S, v)dredy ~=1; this
gives :
1,
o=={p¥?— &) {2)

T

The nhove iz o particular case of the following more general yesult*
Lot oty %y + - o Yo Ve variables, such {hat the probability of N

Tying Detween o and g+ dey is )\’
h{- b :\"\
—J—e doy. NS ©
. - « \/
. ”t
Let wy, gy -« ¥%p be a mel of lincar funetions of the wl, defined by
epaations '\'\'“
o = ‘Ti:]_]_'?'r"l. N .I|‘:]2T{-2 +. .- 'I— ;‘:lrr'ﬂ'm N
s lgytty  Eggtig te v 0T '«2::“:1 ]
T kPlul + ."ilpz'?.{-z 4 'iikpa’um
NN
. N
and let G = g
5 g

"When the probability that zy Hes pepween & and &+ d&; is

F N 0 W <SS S
\/ (;P>.e GUB R ag, L M
2Dk op 1
r=(—1 J‘b\-‘%; (f, =1, 2 « o - py and B=<py®

where b

while D denoted determinant of erder p taken from the array

:~>; Gpf1a - - [i .
N hgylbon + - - Ler 3
"\ . . .
4 3
’\.J “'pl"‘m N L

R\ \
u\’&ﬁ'ﬂ Ty denotes a determinant of order (p—.l) taken fx"orl‘l .th-': m']r‘?i

&\ vwliich is obtained by omitting the jth row in the abo;) e in‘ur?:l}ed o
}  {wo determinants Dy and Dy in the produnct Dy are to be o

{he same eolnynns of .

150. Bertrand’s Proof of the Normal Law.—It was tl':?-
marked by Pertrand { that tbe normal law oi: frequency for ‘;’1{’
variables may be deduced from an assump.tlon resembling the
Postulate of the Arithmetic Mean, from which, as we have seer

* (7. . J. van Uven, Proe. Amster. At 18 {1914}, p. 1124
i Comptes Rendus, 106 {1888), D- 387.
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(§ 112), the normal law of frequency for one varialle may he
deduced.

Consider for definiteness the shots of g ritleman ot 5 target;
and lot the horizontal and vertical deviations of a shot from
the centre of the target be called A and B. Tt is found in
practice that A and B are not independent, but aro to some
oxtent correlated.

Let us now make the foHowing assnuption, whiclMwas
first proposed by Cotes: that i any number of S:’Tr.(}'{fh’ futve
struck the target in porats PP, P, then the 1,08, Jarobible
Pposition of the point aimed, at is the centrard (cendrsof g ravity)
of these points. RG!

Suppose the probability that a shot stg;iiéeé’ an element of
area dady at (z, y) is \V

T(X-m Y- y)(ffz)gy,
when X, Y are the co-ordinates of &He point aimed at. Then
if the co-ordinates of the pointsf ~P1, P, ..., D, are ey, s
(i, Yahs v v o (s ) respecti;{gly”,’ the prodact

~

F(X -, Y_-?/IJF(X:T::(’}?A‘ Yo ... FX w0, Y 7.

*

must be a maximum, when X and Y regarded as variables have
for values

3log F(z, )

O L T =), Ty ~vEn
...\":‘ X‘—Jlﬂtan, Y__?/ﬂ.:Bﬂ-’
"\ ¥/ .
{ y~ the functions ¢ and ¢ must bo such that the equations
oty B) o+ blay, B 4.k (B — 0}_ )
Vlow B+ Yoy B+ . 4 gfa, By =0

are the necessary coDsequences of

Gt ta =0 2
£+, ..+B_“=O}’ @)
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Therefore
{Jb(w g g T s 2T Oy _182“}93_' . '—Bn)

+dlag B} +- -+ blan B
is ideutically zero; and therefore differentiating partially with
respoct 1o u, and denoting the partial derivatives of ¢(z, y) with
respect to 2 and y by ¢, and ¢, respectively, we have

"‘#’1("“2_' o0 s _182—' . "_Jgn} +(P1(0’2‘ J82) =0,

80 b, (, y) is independent of z and ¥ dencte it by . Similarly\

¢, ) 18 a constant J, and zo O\
b, ) =axthy+e . QO

Singe equations (1) are consequerces of equation\(2); we see
on substibuting this value of ¢ that ¢ is zero. Thu¥
y, o) = s+ by. ’
bl ) =zt by RN
Similarly Yl y) = o+ O ©

N

where « and ¥’ are constants. O
Since ¢ and ¢ are partial dexiyatives of the same funection,
we must have b=/, and thugpintegrating,
log Fiz, ¥) = Jdla';ﬁT by + 10y + constant.
Therefore F{z, ) ig0f the form
ne
%\Constant x pos Py TRV,

and #he nopwad law of frequency for B0 soriables i thus
L )}
establishodl
N oo qn two and  three
Theafvdy of normal froguency distributions in two &7 o
vuriahle¥was begtn by Angnst Pravais in 2 celeb?ated ;nemo;é, J wr des
Pﬂ‘.égabilite’s des erreurs de situation dFun porat, P“b]lﬁhed . llt't E‘ mrents
~ T The displacement of & poind i the poctor sum of 0 (1@}; ac; ;1. e?;
Nodwid the probability that the th of these displacements has @ oaie BEHES
Py, i ond (g by, et dyy) 48

83

e (a,g:ti2+2,3i1’tyi+'}'i.’f‘2)(‘h"j[£yi,
T

where 8 = oy BE i=1 2, W Shew that the P"’dmrl:w that
T =0 T T -t gy i
the total displucement hus & pabre between (2 ] and (5 dn Y H O

8_% g._(agﬂ+‘3,axy-l-7sf’)rl;ctfy,
o

* Rim. Sav, Etrewd Paris, 9 (1846), b 255
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A

where o= ¢
=3

213 N l.r‘.-;’m nudebers A, UL (0 A bein
B &Y= A7 T bty 7

defined by the eguations

LA o2 L o
A=3¢ B g‘, C= X Alap_yp
i--15 i=.] 9% d

T i=1

(iPOcagne.)

160. The More General Law of Frequency.—In § 84 we saw that
the normal law of frequency for one vitriahle wag g siecial, el
frequent]y oceurring, case of a maoye general law of fveqgueney, ,{):e&)oting
the probability of a deviation between and &4 de by oy By iHen in
this more general law bz} Is represented by an infinite sew oAy hoge first

£ .
torm - e~ and whose subsequent terms ace phinih from this
AR ¢
ferm by differcutiation, e normal law corvesponds to i case when
the infinite series reduces o its first tegny, ’

Similarly fu (ke cage when there are two yiarfables we 1y derive g
more general law of frequency than the Jotmial oy, reprosented by
bz, 4)dzdy, where .

oF i NN gef w2y
L& i N 5 o=y
{2, 1= eofiz, i+ e, 1m AGaRs 2 - == e SN
Dl y) = eofim, )+ 105, + "ﬂlay."“céﬂamz Feng5, + (O
where flz, o) — e PP — 2y nogy

y wlten” tle origin i suitably thosen, or
more generaily -

N

f(ﬂj, )= e—13?@;,o?z.)3—g2(y—11-)2+ 25(x—m)(;r--rt),
where D g 8w oare conglants.

queucy Distribtition with Twe Variables.—Let % he the
swallest, step Boognised iq measuring #, and let 7 be the
smallest speplin measuring #: and et the probability that
the ﬁrst.f&ttribute A hag g neagure hetween x and - %, while

the' etond altribute 1 bas a measure between yand y-+7, be
HBDAL, whero (5 153)

N\

O &(z, ¥ = !‘ (P2Q2 — 82— PUe— P B ay— ) oy ~b)e
3 w

Let it be required to determing the most probable valnes of
the constantg P9 5 m,b from a set of observations. Tet the
meagures of the individualg observed he (o, #), Ty ) <
TwY,). Then the g priove probability that the observations
will yield thege meagures iy

hnfon
o (0P — o 1o s, oy, D)=423( - 68
ki3
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The mwost probable hypothe&is regarding », ¢, 5, & b is that
which makes this quantity a maximum when (z,, 7,), (e ¥2)s -+ o
(@, %) aTE supposed given. Taking logs, we see that
=4 tog (P22 — %) — PPy - )?
2630, - )y~ B) - 42 - O
muat be a maximun, and therefore
prr ol g a a_y

w0 b e @—0’ ds
The fizst two of these equations are K\
0 = 23w, — @) — 52y, — b} A g
= - 3@, -0} + 2y, - ), PN\ 3
which, since pg+ s, give ab once N
1 < Y4
i = ?—?’ Ly ) ::,\\,;
i 1. \‘
ar:l b= - AWV
Tle other three equations are N\
g .:.’;I‘ e
i
PN oy
- fﬁéjg}a > 2g3ly; - B
\ s
Oy 204 My N -0
‘:?.},,, 32_({2-—32+ ( 1 )(Jl )

ZM: 1
Tet ug~dehote —1?;2(3:1—-@)3 by o ;%E{yl—b)ﬁ by o and

. 1_‘,2_‘1\5\1_ )y, - b) by ¥, 80 that the three numbers oy U ¥
Then the

TN
”m:ay be calenlated from the ebserved Imeasures.
\three preceding equations may he wrilten

2
P S
27, 20'12 Dr oy

R
Fach fraction 18 evidently equal t0 b rd \/ (~—1_?_2 ) an

therefore

PPyt - = L}_(]_: 0 oyt
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Thus the values of p, ¢, » are given by
1 # §

- - e
AL =79 (L~owy 791 n5e

o
2

»=

and replacing p, 4, s by these values in the {requerncy function
we see that #4e probability that the first attiilute o i INERSUre
belween = anid L+, while the second atlribute has G
between y and y &, is dlm, y)hk, where

1 _{_(.2:—u):!__2-;'(.::—&)(__.1;—?-’}‘{

. : =1 72 wrs LS
I =_— o
?,)( ? y) 271"(710'2 ,\/(1 - ?42)8 'N'}&\ o

v/

and where the constants @ b, oy, 0y are &'{éw&sed i lerims of
. . "N
the observed mogsures by the cquations '\

)
&= 1\._}, 2 & '\
PRSI

1 O
62;323/1;‘

N\ 1 i .
o Treg B a)n-h)
N4

These-formulae enable ug to determine the most probable

va%f}"of the comstants of 5 normal frequency distribution in

p{f’q ariables in termg of observed measures.

‘“’“" - - Y 1
NS Er—A AR @8 firing of g turget, aiming af s cenfre, T wking this
"‘\ W centre as origin, the co-ordinates of the points struch by the bullats in n shots
\/ “ o U (o ol Gy ) Wordsing

|

2ol n, 4 %) = o2

¥

| =

{2+ 7k ¥n?) = (LA

=g

;1:(581?7’1 + Tala . . L+ Ll = 1 7ay



O

N \ Substituting
.., we obtain gz, #),
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hite Uit in the long rum one-hulf of the points struck will He within the
ellipa: whose equation is
1 2 Zrmy | o
Xl:gj((}lg - .‘710-'; T 0_—22) = 0-60315.
(Bertrand, (L&, 106 (1888}, 1 521}

142, The Frequencies of the Variables taken Singly.—Let
us uow find the probability that the attribute A lies between
# and x4+ dz, when the attribube B is ignored, in the normal
freguency distribution which has been studied. By (1) of the]
lagt article, the required probability is #.f7, where M

. 5__H__1__ - f 3‘51-1-_?2‘){(%:E_%%%L—”m#(%g??dy_
57 Dag g/ {1 = 7)) oo : ’
Performing the integration, remembering that)

f IR 7
—w ,\m\ &
1 Zl%;lé.z
wo have Ty, = e e
‘-"1';/ (‘47"}'

This equation shows thaby ;;;};:{5 the stundard deviation for the
attribute A, when the attribute T is ignored. Qimilarly o, 18
tie standard deviatiofi for the attribute B.

Denoting by «K((q,y)drdy the probability thab the attribute
A lies between'x and @ + d while the attxibute B lies between
y and y -+ dghdaid denoting by g(= y)d¥ the probability that B
lios l)etgvgén’gf and ¥+ dy when A is known fo be between &

and \-T:\ift, we have
\ e, y) =gl W)

in this equation the known values of ¢ and

and thus find that £he probability that B

Vies between y and y + dy, when A s kmown o be between x and
o+ da, 18 1 _b_‘ﬁ:_a_)}“
1 "-mm{” o1

o (1)

This is @ normel jreguency

ey,
destribution about the wmean

b+ ﬁf'(‘l’__ ﬂ)’ with the standard deviation vef(1 = ).
T
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It follows from this that if (with a great numls of Observa.
tious) we find the mean ¥x of all the measured values of B for
which the measured value of A lies between o anl .. daz, and
i then awe plot Y agatnst z, the plotted Potnls il Tie on the
strovght line

Yu~ b= '-Til(w - ).
! "

.. . , . O\
Similarly if 2, denotes the mean of all the measnred valdes' of
A for which tho measured velue of B lies between 7 2y + dy,
then =, plotted against y gives the straight line O

y—b="2

¥ K25
L W

These lines were called by Galton /znes Of}\;egwss-;ia;ie_

Eo 1—T0 find the standard deviation of e tifference betioon the
measures of the fwo aitributes A ond B, AN

The probability that (measuro of A){ {mcasure of B} Ties Letwaen
C=btwand a— b4y i i evidenth )

(-1‘;\1 - *'-"'r')- N p

. (e 22 Zrwlp Loy
ra) —_ - = — = |- =2 —
_ __d‘_"“'__ == d. g 0N ST o
T o AL ’
2:.—0-10'2\/[ ~ 2 RN
or &N
—z2 = D’lg'l-d'gs—g'r(rlo'g( :
f T —— X B e e i1
% = — i totFramy j du. e 2oiPsHl ¥ ¥
27.-0'10'2:\/ 1 g2 A\ —a
O - N
o &V 4 T

'w/ (27 )j("_lé + 0—22?5010'2) i

Therefore if Q-;;l'dénote the standard deviation of (@ — ), we have
N 4

\¥; o= o2+ ¥ — 2roymy,
7'\ &
\J ] 2 2
N/ T oy — )
an_d%emf‘orc N e .
B e,
o\ 17z

#NB0 equation which may be used to deterniine 5%

NN B 2% —Show that the stardard deviation of the sum of the mewsures of
\ ' Aand B g

(o + o+ Zroyap i

Ea. 3.—8how that the standard deviation of the produect af the measures
of A and B 4y

{2+ w2 2rabeye, + o £+

*Of X, Pearson, Drapers Compoony Resawreh, Mempivs, Biometric Series,
IV, {19073

T CL R, Pearl, Bilometrika, 6 (18093, p, 457,
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165. The Coefficient of Correlation—We now approach
the question, How is correlation to be measured ¢

Wo have seen that in a pormal frequency distribution for two
variables defined by the freguency function

1 1 [(a-o Z—ady-b) +(r¢—2)2}

T gyt . '_‘2_(1.-7'3) a2 Ly g
Ry i s . 5 “
P Y 2oy oan (1 — 7%

the existence of correlation depends on fhe presence of the - O\
term in (& —a){y ~ b} in the exponential, 4. it depends on thea
cooliicient 7. When ¢ is zero there is no correlation, sqcé\
${z, ) then factorises into the preduct of a term deRepding
on 2 only and & term depending on y only. A

(lonsider the case when there is perfect correlatignyi.e. each
value of the measure of A oceurs only in conjubetion with &
particular value of the mcasure of B, so that)ene determines
the other. Tn this case the standard devigtioh of B, when A is
Tnown to have a definite value, must Jf{e zero ; that is, by the
last section, gy /{1 —7%) must vanish;aind therefore » must have
the value unity. O

Fhus v=0 corresponds tq‘]t;?ia absence of corvelation, while
r=1 corresponds to perfect corbelation. T is therefore natural
to take either v itself px\some power of it, such as 7% or 7, @8
the numerical meas e of the correlation between the attributes
A and B. To deéside which power is most suitable* let us
reonr to tho ‘cage of the two riflemen. If we suppose, in the
notation of 4458, that o and & are each unity while A, &, [ are
equal tc\a:ai;ic:h other, the frequency fupetion becomes

A gyt | Thiuy  2hEE
e I

3

m:.\". ;ﬁe

)
N 11 b
which corresponds to B &y But in this case

#

exactly hall of each man’s mean error s due to the common

element (the wind), and it would seem natural to take the

measure of correlation to he 5 We therefore decida‘ that
7 corvelafion. It

itself is the most suilable qmerical measure o
is called the coefficient of correladion.

* Kapteyn, Monthly Nobiees 4% 72 (1912), B B18
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Tet {z, ), (g )y - .. he a great mumber of wcasures of the
atiributes A and I3y and Jot roints having these co-ondinates be Moited.
The points will cluster ronud the mean » =g, y="0; and if we draw
rectangular axes throwgl this mean peant, U minjority of the Point:
will be fouud in the fipst and tlird of the epadrands forued Ly these
axes when » is positive, and in the seeond aud fourth guadrants wlen
s negative,

164, Alternative Way of computing the Correlation Coeﬁigient.
—We have seun in § 97 that the standard deviation of “aNuormal
frequency distribution in a zingle varialle way e i}_nm(t\in many
different ways from given observational materiy] 3 the gafedapplies 1o
the coefficient of vorrelation in a normal fregueney dis ton in fwe
variables. Thus to obtain the correlation coefliclenpditevify from the
Taw material without attempting to arrangc eithcr“o}' the neasirements
in order of increasing magnitude, wo may progebd as folfows: Tirst
suinming each eolunim, find the mean ¢ of theNgdand the viean b of the
¥, Take out all the that exceed «, fndQhBir nwan A, and find also

$

the mean P’ of the corresponding g's, ’];h{?io

& n
E?(;}— @) or B - fes '\/ L rT,
&y ¥
Similarly dake out all {he ¥y gl exceed &, find 1lieir mean B, und fad
also the mean A’ of {]e vorresponding v, We have

Tp= J\/ %(B —4), Al == ?——!(B —B or ATy r\/ R
2

These equations g'Q*e T Ty and 7. In fucg
O B —p A'eg
b\ b R v
165, Numerical Exampleg. —
i I a first exalnple we shall consider the resulis of throws of
dice madeby 4, D, Darbishire ®
Twdlve dice were taken, of which m wer, marked with red, tle Test
being/white. All 12 djce were thrown together, snd the number of

oy = _.\/;:{A —a&),  and B —p—

Ai% showing faces with 4 OF more pips uppermost in this throw was
WSRoted 5 this namber will be called the ¢ Firgt Throw.”

The red dice were left down and {he white dice thrown agnin, The
tolal number of dice (red and white) now showing faces with 4 or more
pips uppermost was noted ; this will he cafled the ©Serond Throw”
corresponding o the « First Tlrow breviously madet  Evidently there
will be correlution between the first and second throws. }

* Mew, Manghester L, and Phil. Soe. 51 (1 807}, No. 16. .
T It may be chown without diffieulty that the Irobability of the case in
which the first throw ig # and the corvesponding second throw is ¢ is the
coellfeient of 1722 in (ke expansion of
™ (1w gya-m 4 gy
. _n
1 In taet, = T
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Tor 500 paits of throws of 12 dicg, of whieh & were marked red and
wore leit down and counted again in the second throw, the reaulls were
s in the following table, a pair of throws of fuy) 2 and 5 being entered
s & it in the square at the intersection of the third row and sixth
colomz,

Spooxn ThROWS

‘o 1 2 3 4 5 6 7 8 9101112 ]Totzmls
— s
o | | 0
SN S S
i i X = h - N\ K
3 | 4 a2 5 6 2 6 ETAS
® : - 3
By 5 9 8 11 18 7 61 | {04
A 2 5 17 24 1% 23 11 2 _{NI05
£ 6l 1 5 14 25 24 24 17 4 3 \,»\\T'l'l'{
g 7 2 9 13 18 27 12 4 28\V 78
g 8 3 7 13 22 14 5 R% ‘ 6o
RN 5 5 6 9 3% 30
0 3 A 5
11 | :1~u ‘ 1
12 A |_°

e — Ay
Totals! 0 0 12 25 #1 92 97299
The means ¢ and b are of sQuIRt u,pprnximal.ely* each equal 10 0.
Led 9, denote ihe value of t.l[g:(@eml of the seeond throws corresponding
o the value = of the firsh t%u\;y : tlen we have from the above table

@ 1gQ.'|3."4|5|6|'F'i819|10'i1'l

——— ——

' e o | 75 L 80 | 8
w30 4s0NS 82 L5716 | g6 70|75 | 80180

‘:\m' .
Thore 1‘1\‘.5{%.1"’3" nearly on the straight line
\

#

..“\ 'gj,[—(}:%(ﬂ:—ﬁ),
”\‘:: U‘Z'T'

ok
: - L
\'2 [

Similarly if @, denotes the value of U )
corresponding to the value ¥ of the seeond throw, We

{ ihe mean of the first throws
find very nearly

iy — 6=3y— 0}

80

© = = 1 ealrly 11 oy, i ik
1 11 ", Th[.‘. \11 © Ot A T
:Hellﬁe we 19.\ 'TI lT.Z o I(] 2. 3 4. 1

5 are = B350, B fi-104.

¥ e compnted values of the arithmetic medlt
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Tound from the frequency distribution of the fitst oy . aloe, ignoring

second throws, which ia (adding rows in 1. 2hove tabley

@ 0!1'2!3|4|'5[G|7|8|u ERURINS ST

i i T | i .
Frequeney ol 3 | & 124,63, 105 ,|l1_7| G630 L Lo

For simplieity, we shall assunte that =0 =G, Weo Lo obtain

<

. Frequency. fo— @ Produst AL
0 0 36 <\
1 3 25 TSN
2 & 16 128
3 94 0 ,\] oy
4 63 4 e iE
5 165 1 NS 103
] 117 BN\ 4 0
7 T8 1 ) TH
8 56 AN 2654
9 30 w8, 270
10 5 16 80
11 1 W W5 23
12 0 X8 a8 ]
n= 5_06.\:‘.3; 1493 o= 35 — u)2
A -
Ty :_?—:.E(sz: —af=2.986,
L
'“,\ 7= 1-53,

/

A
The value of o-z\fa\found in precizely e samo way from the froquency
distribution (addihg colunimg in the above table)

¥ ,~’\~é|1|‘2:3|4 5|6i'7|859|]0;1Ti'12
"| | | i :

———aat _"———.l_— _ '—'——‘5_—=“_i_l"'_|_
Trequemdy 0 | g !12]25!51|92,97,1]9!71;23'10i 0lo

We fi 04 = 2966, so that Ta=1-52,
S astly, ot g compuie the valne of p from the formula of § 161,
;"Nﬁ?nely,
7 Nos

\/ re !

- Elr e gtar B
Ui | ;\yl
YT,

We find 2 — el ¥ —bl=064,
and therefove r=0002 % 0-578 « 0-581 x 664
=043,

agreeing roughly with the brevious detormination,

o 2 When three of the 19 dice were wAeerked red, and were left down
to be counted ¢ the serond thi-ow, Darbishires re3tlts were g Joltows -
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Suconn THEROWS

o 1 2 3 4 b 6 T8 9 10 11 12
]
1 1 1
2 6 1
£ 3 11 5 2 2 4 3
2 4 1 & 6 21 16 6 4
g 5 4 3 12 15 23 22 % 3 1
L, 6 1 0 16 1Y 23 28 22 5 1
7 1 4 © 17 18 24 16 5 3
[ 1 5 § 10 14 8 7 2 1
4 4 3 9 6 6 2 NN
10 1 1 1 4 3 D
il 1 N
12 ,"I‘x\ ’
W\
Find the coefficient of correlation. RN

N\
Y. 8 When nine of the 12 dice were ma-r?ceri'?:é'&,\cmd awere left doun
ounted tn the seeond throw, Darbishires res:u-l}gﬁ-’ere as follows:

A/

SEcoND THROFSN
o 12 3 4 5 &\ 8 9 10 i1 12

0 SN
1 11 . N
2 3 5 1A
z 3 5OANE 1
2 4 1 osgfy 19 5 1
ER % M7 80 32 13
=g SAP 10 18 a4 26 100 ]
g 7 P\ 4 17 26 30 18 7
R RN 7 28 16 11 B
e s g 13 9 T 1
m%“' 1 4 3 2
R\ 1 1
¥

\Y4
\fl}ﬂfﬂ! the coefficdent of correlatton.
Ea 4—TIn the following tablo, which 55 due to Weldon, ¥ » d;:'nutgs the
length of the corapoce of the common shrimgp, y denotes the length of the post—h
spinows portion af the CErepeet, Tu denotes the mean of the walues -o{ 1.
corresponding to defimite vilne of 4, and ¥ Jenotes the mean r?f .!hg ;r: g;.s
of ¥ corresponding fo o definite volue of o The mean q:af-uc_ ofl-.:,. 't_? :3 ' mi
its stundard deviation is 73] the mean vufue of 7 88 LIS a
its standard deviotion s 518,

Proe. RuS. 47 (1890), p. 4453 81 (1892), - 2
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Over 260 ! 188-41 Over 155 '

260 | 185-41 I8t ¢ 1hse25 |
259 | 18325 | 185 I
258 | 182-25 | TSt angpag |
257 182-34
236 | 182.23 ‘
253 181-14
254 | 17908
253 | 175-50
252 | 17917

|
251 ' 17865
250 | 17771
240, 177-39
248 | 17864 |

s\
247 | 17538 ,:.:\
246 ‘ 17520 2N |
245 | 17356 AV
244 | 1rga1 | (W "
ray | 17333 A3 160 | aif04
242 11728108 Under 169 | 23985 |
241 | 1714 | ! |
240 | 1607 - ]

Under 240M<kTO-33

.0
’\\

. \ 7 ae , ;
From thésdydate show thar "2 _ 067, 22097 3, tnd consequently
9 Nud . o
1 1

7=0-830¢

..leu;..\a.*-—An Yrh contasning white and black bails 45 w suaintained
L‘k@uﬁn drawing o ball the probability of getttng o awhite buld 43 o constant

{e, et thet of getting o black ball 45 f=1=p  The first e of o peir

N8 F0 consist of § halls faken One Gt & ime from the wen,  The second drom
A

~\J

\ }

My & b0 consiet of 8 balls of which § are laken at rondom from the s first
drawn, and s § gpe drown one at a e Jrow the wen.  Show thet the
eaeietent of correlution between the number of white balls ¢ the first and
sscond dromwings of o poir g5 i

166. The Coefficient of Correlation for Frequency Distri-
butions which are not Normal.—The theory may he cxtended
to frequency distributions which are not normal in the following
way.

*H.T. Rictz, dnoals of Meth, 21 {19200, p. 504.
T OF G . Yule, Pros, Eoy. Soc. g0 (1 8Y7), p. 477,
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st 2 and y denote devialions from the means of the
measares of the two attributes. Leb yy denote a8 usual the
meai of all the values of y which are observed in agsoriation
willi a given deviation @ of the atiribute A {rom its mean.
Then in the cage of normal frequency distributions we know
{§ 162) that it the values of ¥, are plotted against the coire-

aponding values of », the re resentative pointe lie on a atraicht
= L f=

. g T

line, namely, ¥ = b, where % has the value 2.
.

In the case of non-normal frequency the points will not dn,
general lie on & straight line, but let us try to find & coyst,‘e}nt

b which will satisty all the equations A2
.
a1 = by, \/
Yua = gy ¢ \\;
. - . . ‘\ W

a3 well as possible, when @, @ - « - 3 ‘the observed values of
2, and Y, Yuz » - the associate@ '»x?'ahies of ¥y We shall
suppose that to the equation ¥fes 07, & weight is attached,
e:jual to the number of obseriitions on which it ig based, 8y
#,. From these equations{dt condition we have at once the
normal equation for &, .

hFeN S, "
1,1, = ‘5"?’-‘:,94,3)’ My

L >

where the summé;ﬁi(;ﬁ ig over all the distinet values of . This
squation is“gv"*}déntly equivalent to the equation
s\\ p=w,2 = 2,

Whe‘sk;‘:fhe gummation is now nof over all the distinet values of
7B over all the observations, so that the same value of
oécurs , times In the sum. ‘

If as before we write o;? for the mean of 22 a,? for the mean
of 2, and oy for the mean of xy, we sce therefore that.the
straight line which best fits the points {z, yx) 18 the straight
lina

o

g, =
e P

just asn the case of normal frequency distributions. Similarly

N\ 3
1 ¢\

O\
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the straight line which best fits the poinls {5} i3 the
gtraight line

ry7
dhy= — y’
(}'2

We may then call the number » defined in il way the
coefficient of correlution of the two attributes, even though the
frequency distribution is not normal. N\

167. The Correlation Ratio.—A more satisfactong method
of estimating the degres of correlation in a',r{];:}r;}wrmal
frequency distribution is by means of the corgelubicn ratio *
which is defined in the following way. N

Let the total number of individual ob§§@zﬁtions be W, and
let Nz, y)dedy be the number for which. tho abtribute A lies
between x and » + e, while the attribqte B lies between y and

#+dy.  Let Nuyde, whers \‘\\
"%*f‘;'ﬁ(w: y)dy,

be the number of indiviti}l@l’é:'f('Jr which A lies betwoen » and
#+dr, and leb g, denopd “$he mean value of ¥ for this set, so
that N

.“,\w R lim :f

#\.J —

rel

Yl y)dy.

(™
There wi]l% high correlation if the 4's of this st arc always
clustered elosely around the value ¥ L if the standard devia-

tion of thésé ¥'s is always small. Denoting this standard devia-
tion-b§’e,, we have

No/

O ,0," = f ) & = yul?dlz, y)dy.

S

If o 2 is to be small for all values of %, ils weighted average

must be small.  We shall denote this weighted average by 62 50

92:/ %xcmgdmsz fw (¥ = g bz, )y

Now the standard deviation oy i8 given by the formula

oyt = f f (y — B)2p(e, y)deaedy,

* OF K. Dearson, “On the Theory of Skew Correlation,” Dropers Resemreh
Mem. 2 (1905),
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T€ in this we write {{y — ) + (yu — B)}? for {y - B)% we obtain
wp=tir [ [ 2ly -y - Dbl )y
+ f 2 f " (g - B2l p)dary.
Siuce f ) (y - )l y)dy is zero, the fivst of these double

integrals vanishes, So i we define a new number 5 by the

equation )
1 (" 0 '\ N
P
g d—wd -2 £ ™ "('
the last equation becomes D>
. i O
NS gy v

T2
“ince high correlation is associated with W}y gmall values
of ), we see that high corration is assouinted with values of
nealy equal o wniry. If, on the ofher hand, there is no

correistion, there is no reason why ‘th.é;mean of the y's for each
separate value of x should differ.ayntematically from the mean
of =1l the #'s, and we may therefore expect (7 - B)* t0 be small,
and consequently 5 to be § all.

The number n is galled the correlution ratio
definition, we have

» . _-l ol . (.? _ 6)2(&3
NG T @ ik o H
N\ Tl -m

From the

so that 77 is'sﬁ’lh;ﬁeighted average of (yu—B)° divided by o
s butions.— We shall now show

168. Gage of Normal Distri :
that }vhen the frequensy disteibutton 18 normed the correlation
% iri\bs tdentical with the correlaiion coefficient 7 '
\E}r in the case of mormal frequency distributions, as Wwe
have seen (§ 162), we have

70,

W b=——(m-—r¢5),
T

where « is the mean of all the e

ia 2
50 = L(10) [ el P
2 .y (}‘1 —

o,

b . ;
. : . Lot neing the

* f[iera is, of conrse, & sceond correlation ratic obtained by ijnterchanging

parts played by = and ¥ throughout. 2
(pE1L)
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0
Since j N — @)l = 2,
—rt

this gives 42 =2, which establishes the proposition,

169. Contingency Methods.—1t frequently happens that
the attributes whose correlation we wish to discover are of
such & nature thai they do not admit of quanbitalive neasure-
ment—e.g. different colours,—and the groups into which ghey
are classified cannot be arranged in a scquence Possgssing a
logical order. To meet this case, what are known as g:r?}?éﬁzgemy
methods have been devised by K. Pearson,* O

Let A represent any atiribute, and let it "Lua"élassiﬁed into
groups Ay, A, .. ., A, let the total numper” of individuals
examined be N, and lot the numbers whith fall into these
groups be n,, g, « o ., Ty respectively\.Then the probability

2,

of an individual falling into the #8gToup is 1 Now Lt the

same population be classified aé(;dfding o sy other atfribute
to the groups By, By . . .oB) and let the group frequencies

of the N individuals be Py, My, L, respectively, so that
the probahility of an_individual falling into the gth group is
My

N~ Then by the-$hvorem of Conjunctive Probability, if the

two afstribute‘s\%t:e entirely uncorrelated, the probability of

an individgayﬁllling into the gronp A and also into the group
AN M

B, W?I}I'c(m - j%z—f, 50 the number of individuals to be expected

N\

Sﬁﬁéﬁ}"iug these conditions would be n__ffr%, which we shall
:.\"diinote by vu,.  Let the number actually observed as gatisfying
<\; “these conditions be 7,,. Then the differences (n,, - v, ), in 50
far as they are systewatic, represent the correlation of the two
attributes, and some fanction of them may bhe taken as a
measure of the corvelation. Pearson introduced two of these,

namely, the TO0L-mean-squmrg contingency ¢ defined by the
equation :

*® Drapers' €, Res, Hean,, Biom. Serfes, i, {1904).
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and the mean contingency ¥, defined by the equation
1.
=R (g = ¥pah

whers 3 denotes summation over the positive contingencies
only.

170. Case of Norm
that sehon the frequency @
sqiee conlingensy ¢ 48 conmes

al Distributions—We shall now show
Lsfribution s normal, the Fool-meas
ted with the correlation cocfficient
N ’
\)
7'\ ¥
« \J/

o\
2%
%

By tha equelion

432

2

= e or arcsin r=are tan .

/e N\ P
For when the frequency distribution is norr@l{tél«fing the

origin of z and y at the centre of the distribndien, we have

-y,

§ 152) N
e L& i
m, 1w Ty o P
- T = NI i
NI A (27)
N s:ﬁé's 22
'\s_ 2T Bt
80 Vor = oo N
7 _17-:5:'_{:52“
1 o2 ray, ¥
and N grzu_——'?'—”)(d_lro_'iff:\ 72“)
# R, =5 7N _ 2] *
g an.rs\ ,\F]. — 7 2‘)
Therefore \ N\ x
Ciaet ol R I s
/ ; ;l p—'-_’(L_-'rs} i epedl=7E) g o
('nm - 1’1;()2 A\ 1-+t 2 R
i \[_ ¢ L Oy — ; 1 22 Ly, pis - __".'1—2
L 1’23{‘\3"\"-”‘_0'10'2 2 3’2(1—@(51“ oy TaR) € Pt R
"/ — T T
,\ i l - ,?.2
& A
{nwq — Yo
T

s ~Substituting thie expression
\nd remembering that

J‘ i f ’ P ) oy =
—w =0

1

2.
we have =1
which is the required result.”

* Yor other deductions, ¢f Ww. P. Elderton,
(London, 1906), p- 148.

—2—-2+1=i—

—oa

AN Vpy

T__
N (el ~ 2y
)2
o

Frequency Crves and o

yrelation
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171. Blultiple Normal Correlation.—We shall now extend
the theory to the case when 1nore atbributes than pwo are eon-
sidered. Ior siinplicity we ghall suppose the nuwlier to be
three, but the formulue admit of an obvious generalisation to
the case of avy number. The tretmency distriliition will bo
supposed b0 be normal, so (he probability that the ativibute o
has a measure hetween 2 and 2+ s, while the altrilute Blas
& measure between 4 aund y+dy, and the attribnte v has a
measure betweon z and z + d, i Py, 2)dadydz, whigh)

£\
rf)(:x, Y, z) - Kg—(ur3+byz;—'r:2+3,fy:+ﬂz.r:.z'—_'i'\:‘rf';ii\“; (1)
and K, a, b, ¢, £, g & denoto constants, theng,g:ii‘,_’g‘.in heving been
taken so that tho mean values of @ yand 2 are zero. The
constant K may be determined at onq&g\\i}om the eqnation
{

f [ f q‘:(ar,ﬂ,ﬁfz:)}.wdydz =1;

for, rememboring  that 1]}:'.I‘(,«>_«,I, Tgy -+ o @) s a positive

quadratic form and A itg.&lﬁt‘ermiﬂant, then

x 5 w N :.o.:’ ] L
=Ty, Egn v ovoey B} . i T

3 ¢ deglr, . . de, = v

.[_00 [—r,o [_m ,\—{x Hqthig AL

'\’\.,a
we have e \ K= 11?‘, (2)
¢~ .
whero JOA=|a 1 4 ‘ = abo + 2fgh — af? ~ bg? - o2, (3)
i"\:' i f / .;
N\ g 7 ¢

‘.\

:«'Q‘B'y integrating the expression {1} we readily obtain the follow-
7 ing results .

The probability that « is between s and x+dx, while £ is
between 4 and Y +dy, y being disregarded, iy

1AF -I@et sy omy)
== ° Ly, (4)

o CE

where 4, B, .. . are the c¢o-factors of & b, ...in the
determinant A,
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Comparing (4) with the usual form of the frequency function

for bwo variables, namely,
@ e
- ___1 - ?4(1'-1"2)(#‘12 17y '—Jgg)d;?}dy
2-‘:.’0‘10'2.‘/ (1 - ?’2) _ ’

we have = _1:[__ 2 ﬁ& B _B_

e :—J(AB), oy aA Ty ZA )
The cocfficient of correlation of the attributes o and B is therefore

H

the coolficient of correlation 7y between S and v and“s”

between o and vy, let us consider the determinant N

h} N o
}\.5| 1 T .?]_3 . ”"\\.

| #g1 1 Ty

| 7, ¥, 1 N
[ T; 32 1,\,,

and denote by R, the co-factor of thegeI:e Hent in the pth row
and ¢th column. We have .
R_;-‘ ] H ;"’3:"“

o N I

e A
) ;\G,A_ - — E’é_ Rin= __g_ __ ate.
Lspe Fetogapy T B Cj
Thesg\\eifil\zéﬁ;ions may he written
R :‘“\ R=5 —; -~ R,= IRe, %t B,= 2 l‘?n‘lf.rzk, ete.,
M\’ “,’ - + s
By = FIE‘E—, ete.,

|
g0 we have =9, % :
‘ Mo ¥ 2Rey7p

and thus fnally expressing the frequency function 1 terms
of the correlation coefficients and standard deviabions, the
probability that the attribute o has @ measure Deowren ;c; HTME
o+ o, while B has o MESITE satureen 1 and y + g @y AT “
measure helwween ¥ and 2 + dz, 5

Bz, y, 7) Aoty

e We shall denote this by 7y Tntroducing gimilarly, |
JLAD) ¥ AN

"
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where

b3, 2) =

2Bugies
Tudy

iy Tl

Rz, Ty R
1 - »m(

(2 7} by I

- IL;_L{M:@)

T gy

Similarly in the general case® when there re 4 s riables
Ly Py e &y whose standard devigtions ore T Ty v ooy 17, O
whose correlation cocfficients in pairs are Pap Foage « v -, (00 prob-
ability that the first attriluts has measre belween i wnd oy indie,,
whale the second attribute has o measre befisoen v, il NPz,

and s0 on, i3 (D))
ey, oy, L L, ) drydry oL de O
where \
1 ¢Ryp? | Rawrs® 4
Ll
¢J =- _\:? 16 - '\\.
(27.")"0"10'2 N U_}LRE AS )
Here I denoics the determingni N S i’ aud I,
(N i i
*%1 -[ 4 23 e ETIR I
% 3. . . < .

a a v |
WY a e Te . 1|

denotes the co-factor of thpt’éiément in the pth row and gth
column, SN

ad

Bz L—TIn the ense ofhree attributes, suppose thut y is known fo have a
mensure between 3 and Nt du: show that the probability that o has a
measure betwpen xaﬁg‘ x4+ dx, while B has o measure Defwesn Y and
Y+ dy, i ’

s WAL AU P T ( ~ne7 )("mﬁ")
e\ _1?") "91@("9 g ) Beim\* ™ "y T oy 7 dudy,
Brapr, SR
80 that AWE the meusure of ¥ @ Enown to be 2, the mieon value of o 45
. \Y . ToulF

Ly dnd the mean valie of 3 4 D202,
@

S
\EL 2T the ease of Heree atiydh ules, suppose that v i known lo have ¢
N measure hefween, and &+ ds ond B to have o measwre Latween y and
\\ Wy Sdy Show that the probalbility that o has a Mmeasure detiween 2 and
7 w4 ds

“Q

- R ( colfre , By )2
AT -
PRe N B Y gl d,

T
T

LT
(2 = Rjror”

so that when the moasire of v is known fo be z, and the measure of B 68
known to be 1, the megn value of the megsure of o is

»

- “:lh‘lz? _ ‘13‘13%

ety gy,
* K. Pearson, Phil. Zrans. 187 A {1898), p. 253 ; 200 A (1902), p. 1.



CHAPTER XIII

THE SEARCH FOR FERIODICITIES N
2 AN
172. Introduction.—In Chaper X we have been concafnied
with sums of trigonometric terms of the type N
1, GOS8 (ml + &) + 81y 08 (2mt + €) + @3 CUB {(3nf+ esbix S (1)

As explained in § 132, the vibration of a violig iring may be
represented by a series of this kind when denopes the time and
Oy, (g » - OT8 serfajn functions of posiig’\&ﬁ‘on the string, the
individusl terms of the series corresponding to the tundamental
note of the string and it8 varions ghertones.

Tt is shown in works on t]:geJIiheory of Sound that if instead

N

of a violin string we consides & bar vibrating laterally (6.g. &

tuning fork), we obtain for the motion ab & definite point of

the bar a series of thq't?pe
ft, 608 (myf + o) Rl 008 (gt + €g) + @3 OO g re) .- 3

are certain functions of position on the

where o, iy @y - - .
twice 7ig, OF

bar, but wherg we now 10 longer have Ry equal to

eqltation cos cosh m+1=0, 80 that my:feifs’ « ¢ )
G52 ... 22203 . BLY0 . .5 The sum of a series
NJof the type (2) 18 evidently not 2 periodic function of ¢,

but we can speak of it 88 constituted of eloments which are

I . .2 ;
periodie, the periods beidg }:—T, -?:—-, et

1 2 i .

Tn many branches of physica,l goience, egpecially i meteoro-
logy and astronomy, phenemena are observed which may be
represented by sums resembling (2): for example, the helght of
sea-water at any instanb depends on & gumber of comstifucnt

343
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tides, of which one (the semi-diurnal tide, which is Lk largest
constituent tide along the Dritish coasts) has a period of half a
day, snother (the diurnal tide) has a period of a day, another
(the fortnightly tide) hag a period of mearly a fortnight, and so
on. Each constituent tide produces its own effeet independ-
ently of the others, and the actual height of water iz il sum
of these effects. The height of water can therefore ho repre-
sented by an expression of the form
Q

Y=o+, 008 (nyf+e) + 008 (Myf +e) +. . L+ cos\(f-ﬂ:! + €.,
each of the trigonometrical terms corresponding to otfo of the
constituent tides. A

In the case of other phenomena, eg. the ‘épott-edr_less of
the sun, the variation of the obsorve@mfyiantity appears to
consist of an accidental or capriciouf\part, which caunot be
repregented by any analytical egplession, superposed on a
systematic part, which the mathdrtatician may attempt to
represent by an expression of™the form (2). The arca covered
by spots on the sun cerfhinly fluctuates in a way which
suggests & certain amouut of regularity iu the variation,
maxima oceurring af \ititervals of {on the average) rather
more than cleven years.

If a series oflebservations of any quantity are talen, and
there is reagon ‘o expect that they can be represented by a
sam of trigonomotric terms, or thab they involve (entangled
with an{irfepular variation) a regular variation which can be
rep‘{e{aﬂted by a sum of trigonometric terms, then the first

2r Orx

s Ty e e e
ny Ty

28 0of these constituent terms, This must alsvays be done before
7\

we attempt to find the awmplitudes ., a,, ftg, . . . or the phases
€p €y €y - - . In many cuses the periods are known @ priori
from theory er from some reasonalle ground of expectation:
for instance, we should haturally expect the periods of fhe
regular terms in the temperature at a given place to be a day
and a year. Dutb in many cthor cases, eg. the spottedness of
the sun, the periods are quite unknown. We shall show in the
present chapter how they may be discovered.
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173, Testing for an Assumed Period—Let the observed
meusures of the phenomenon, made ab equal infervals of time,
be dencted by

Yy Uys By, Yy« . (1]

and suppose that it is desired to best this sequence for a
periodicity whose period extends over p conseculive numbers
of the sequence; w, might, for instance, mean the number of
earthquakes in the year » and we might wish-to know whether
the Hability to earthquakes is greater every p yeals. Let v, .
denote the remainder when an integer 7 is divided bv p, '56\"'\

that the sequence Lo
Vg g T Vo v v - ,,‘N"' @
is simply R4S
0,1,2, ... (p-1,01,2 ... (p—1) GdNE - - (3)

Then tho question “ Does the sequence (1) jm’bﬁ-‘e the assumed
periodicity 27 may be expressed moro precisely thus: “ Does
sorvelution exist betwesn the sequense (1] Jnd the sequonce (2) 77
As the frequency distribubion withewltich we are dez_mling is not
likely to be normal, the correldtion ratio (§ 167) is a better
moihod of estimaling gorrelatipn than the correlation cuefh’c’lcn't.
Ta find the corrclation ratlo, we mush firat arrange the #'s
colinng, so that all thé ¥’s which correspond to the same value
of » are in the san}a\;ﬂumn. This may obviously be done by
merely writing,dq{m the »'s in order in horizontal Iines, each of

which contqi\né}s w's thus:

\:»\':""-f'o Uy g co Mt
- e My
K\ %, St Uy +a ap—1
\ Ug _
ad f gy, - 1

RN Ty, o+l opta 3p

O
4 \\. oo - . l?!

N Uiy Womprt Mmortr 1T T

- T U,-

Sums U, U, Uy 1

All the 2’s in the first column correspond o the value zero of
v, all the w's in the gecond column correspond to the value
unity of », and so on: we bave taken enough of the observt.faé‘
tional material to fll 7 horizontal TOWS, and we have denote

. o, U
the sums of the individual golumns by Up Uss pt

12"
(D311}



o\

N i,

346 THE CALCULUS OF OBSERVATIONS

Dividing these last numbers by m we oblain the ncans M,
M,, ..., M, , of the values of » in the individual columns.-
Then (§ 167) the correlution ratio 4 4s the stundurd deviation of
the M’s, divided by the standard deviotion of the v's, The value
of % is caleulated in this way for a largo number of values of p,
and the results plotted as a curve in which p is the abscissa
and the corresponding value of 3 is the ordinate. This curve
will be called & periodogram.* N\

It is easy to seo why the ratio of the standard deyiation of
the M’s to the standard deviation of the s ig.\&\‘sﬁitable
indicator of perindicity. For in the course of gqune horizontal
row of the above scheme, the part of the pheup'ﬁi’éﬂon which Is
of period p will pass through all the phagéstol one complete
period, 5o that this periodic part is in<the’same phase at all
terms which are above or below each other in the same verlical
column, e.g. it is in the same phase. @t /the terms «,, Uytyn Mgyt
s+ o Uyt The part of thewphenomenon which is of period
p therefore appears with m-fold amplitude in the row Uy, T, . . .,
U,-y, and therefore appeargwith its own proper amplitnde in

~ the row of means M, Mg S LM Any accidental disturb-

7 &

ance on the other hand® or any pjérilodic disturbance of period
different from. p, "j(ill be enfeebled by the process of forming
means, since (positive and negative deviations will tend to
annul each swther; and thercfore, when a periodicity of period
p existg, fhe/standard deviation of the M’s has a valus much
larger tl}a\n when a periodicily of this poriod does not exist
in the{phenomenon.

~ 171 The Periodogram in the Neighbourhood of a True

';?eriod.—-Suppose now that each of the terms of the sequence

B

¢ at, consists of a simple periodic part of peried T, say « sin —m

togothor with a part which does mot involve this periodieity,
say b, 80
. 25
U, = @ BN i + bx,

* Tha Lerm perindogram was introdneed by Schuster, Terrestrial Mugnefism,
3 (-1898)’ B 24, Schusler's periodograin differs from that introdnced above,
but the similarity of form and Purposo is 5o great that it has seomed best bo
retain the name,
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Txenote by o, the standard deviation of the ¥s, and denote
by & the standard deviation of the »s. Since the standard
deviation of fhe sequence 0, sin 2’?’ sin %’, sin (?]1;, R is 312-,
and there is no correlation between b, and @ gin Ll‘ we have

cr2 = Eﬂ?‘ + o'bz.

Next, let U, denote as before the som of w,+ ¥4+ - -
+ Uy P and let B denobe the sum byt lprate o

+ {!"'i'.irr."l)_g}'l'x' Then "'i\
e gwr o telprn), | snlefe- DAL
U, -~[;L5111 T -+ gin St -+ T IN
gin T ' o\ v
. (Qax (= 1)EP \
or U,=a-— -8 {_:TT' + (—_T_):? P
sin 1 : il
T \‘

Thenote by 2 the standard dev atiorlof #'The U's and by S, the
stapdard deviation of the B's. Then in the same Way as we
found o, we find ':&'”

. ’gﬂ\:ﬁz ?Er;ﬁ
'2’2«—'}\552 ) .Y
s \J “ T

\\\ Slu?' ,T .

Now, sineg ’B As tho sum of m of the b,s, we may write
22 = mo a,gd. therefore

™

x\;’ ' 1 sin® m,;p
O seo gt ——— F Mg
N\ 2 sin’ 4
e T
'"\ W o
\" Thus if S. denotes the standard deviation of the means
M, M, - , M, of the individual columns, We have
1
- 2‘2
Zu =
il
gin® -
T o
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Therefore, if 4 denotes as usual the correlation rutio, we have

2]\12
a_ =M
N o2
sip2 7P
2 T 1 ,
L P e M
2m S
(J‘
—lr':‘2 a2 O
2' YR

V.

This is the equation of the pertodogram, whey ’;;?";}J;ad 7 are
taken as rectangular co-ordinates ; or to spealk b sccurately,
1t is the form to which the equation of the, fietiodogram tends
as the amount of ohservational materip,l'&(@e"d in constructing
it, is incregsed indeﬁnitely, The numbéeim will, in most 4888,
be taken greater than 20 if there sigysuflicient ofaervational
material to provide so many horizdaial rows,

From the above equation ¥ 38 obvious that with such a
value of m, 4 is a rather smalMEaction, except when » is nearly
equal to T. Let P = T(lv‘f':;{)f where ¢ i3 & small number; then

& « tends to zero, the above value of 7" tends to the value

NS

and ag @ is a large number, this is nearly —!_, e 1t falls
£ ) =7
S 14770

a2
4 M . S
’\wzay rapidly as ¢ passes away from zero in either dirvcction,

o\ 1
N and when ¢ = + o " becomes
~\J

N\

1

2
- T
v
‘I_‘__,
SoR g2
2&5 I—o-b
which is the smallest value
There are maxima of 7 again

m a- . .
T = Mk 5 that is when ¢ is nearly equal to

it can take for any value of p.
near the values of p given by

+ . {(lollect-
~ 2m
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. ing our results, we may say that when the phenomenon studied
iy simple periodic disturbance of period T, superposed on ¢
non-systemaite disturbanee, and the perodogram s computed
with o lurge value of m, the pertodogram surve is close to the asis
of p wrcopt whon P is in the neighbowrhood of T, where the curve

: aT .
has @ peak of breadth P Janked by smaller peaks on both sudes.

The recognition of these peaks in the periodograin is the means

by which we discover hiddeun periodicities.

holow gives the magnitude (4. a T0EASUTS of the brightness] ot
o variabls star at midpight on 600 successive days...f(“f‘hese
wagnitudes were obtained by reading off fromy al\Curve, on
witich all the observations of the star’s brightnesg\vere plotted :
they have been redunced to a scale suitable Nor periodogram
analysis.) Tt is required to find a br%g@émetrical function
which will represent the magpitude atAnly bime &

Day. |Mag. | Day- Mag. ‘ v}‘[q.g Day. | Mag Day. | Mag.
1] 95| n 24 o | ety2r| 8Lyl
HECHME R
331 ] 93 5 3l

|4 ls2 24,\?11 s e1lon| salio
5| 3 @25 |15 65|19 8519

‘ 5| s34 @5 15 : ”

6 | 33> 26 | 19 3l 6o 17| 8619
o L3DT 2 AR 50 |
7 sl 27 23 ‘ :
8\} a1 28126 sl oos |1z 8820
‘9} ag | 20 | 29 7| oo f2 8 ‘ 20
hSto | 25 | B0 82 ig | -i? ﬂ ?]? 5 |
OF 11 %] 5 2 AR R
12118 52|34 2| 10] % |2
1334 2202 32 | *ﬁ 13 | oxl 20
14§10 2 o oq | 73|12 95 | 21
5] 7] 3 so |l 7otz oo | 20
16| 4l 3620 20 | 780285

AR EAFI R IR
¥ g | ES 1 So | mo|ls | 992
sol ol - I o8 | g0 | 16§ 10019

_2.0|0 40\}3|60\‘ 16 100 |

N

175. An Example of Periodogram Analysis.—The tabh'a\".\

Q.
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Duy. | Mag. H Day. |Mag, | Day. |Mag. ‘ Day. '31;1.5. S || Mag.
101 |18 ' 142 [ 12 | 183 | 19 ‘ 294 | 15 1 i 9
(102 | 17 143 | 16 | 184 lo|‘225 |15, 28 29
10316 ) 144 | 19 | 185 226 | 16 " 267 ! 30
104 | 145 23 | 186 H 227 | L7 7 w8 | 8
105 | 13 ) 146 | 27 | 187 | 7 | 228 | 171269 | 50
106 | 12 | 147 | 0 188 | 5 | 220 | 17 270 | 29
107 | 11 189 1 4| 250 | 17 v om
108 | 10 | 149 ! :-33 190 | 413231 | 1813 K%
109 | 9 )| 150 | 34 | 191 | 5 h 232 118 | 25002
1100 9 151 (33| 192! 5 233 | 10! 2

LU | 10 | 152 193 | 71 234 19 povs

112 710 ¢ 153 | 30 § 194 | 9 | 235 | 20 ‘2:[-; 12
L3 11 154 | 27 | 195 | 12 | 236 L20/[ 275 ¢ 9
114 112 1 155 | 24 | 196 | (1 230DEL 278 | 6
105 | 14 | 156 | 20 | 197 | 17 §§Q~ 21 ‘v“w 4
116 [ 16 157 [ 16 || 198 | 204289 | 22 | 930 »
L7119 1 158 | 12 | 199 | 22N0¥840 | 22 ‘ 281 | 1!
LIS 120 11 159 | 9 1 200 18k 241 | 22 | 282 ' 1 [
HY 124 1160 | 5 | 20005 | 242 | 22 4 283 | 2
120 125 J 161 | 3 | 2q90] 26 | 243 | 22 | 252 | 4
121027 1162 | 1 [~908 | 27 | vaq | 21 , 285 | 7
12228 | 163 | o(h204 27 | 245 | 20 | 956 | 10
193129 | 164 | ~D] 205 | 26 | 246 | 19 || 287 | 14
124129 0 16641 1 206 | 25 | 247 | 17 | 288 | 17
125 128 | 366N 3 | 207 [ 24 | 248 1 16 | 280 | 21
126 | 27 L3267 | 6 | 208 | 22 | 249 | 14 | 200 25
1271 209468 | 9 7 209 | 20 | 250 | 12 | 291 | 29 |
128 |23 169 | 13 | 210, 18 | 251 | 11 292 1 31
1200020 | 170 [ 17 | 201 | 17 | 252 | o | 205 | 33
1817 0 371 | 21 | 212 | 15 | 258 | g ! 901 34 |
314179 20 | 913 | 14 | 254 | 7. 995 | 834 |
82 111 1173 |27 4 214 |13 | 255 | 8 | 200 a3
1331 8 1174 [ 30 | 215 | 13| 256 | 8 | 207 ] 31
1341 51175 " 32 | 216 [ 12 [ 9571 9 4 208 | 29
1351 4 176 1 33 | 217 [ 12| 258 | 10 | 200 26
1360 20177 | 83 0 218 1 12 | 259 | 12 § 300 | 22
13702 178 | a2 | 219 13 | 260 ) 14 | 301 | 19
I38 ) 20179 | 31 | 220 . 43 | 261 17 || 302 | 14
1391 41180 " 28 | 221 | 13 | 262 | 20 | 304 | 1L
140\ 611181 25 | 292 | 14 | 963 | 23 . 304 | ¥
1411 9 " 182 | 22 1 223 | 14 | 261 | 25 | 305 4J

1 : | i i




]r;ay. Mag. || Day.
l.—

| 3 Josl 2 |547
| 307 | 1| 348
L 308 0‘ 349
200 | 11 350
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351

353
354
36D
356
957
358
350
360
361
362
363

552

Mag.

24
l 25
25
24
24
22
21
19
18
17
18
18
15

14-

14
14

'.1’|

] 408
409
of 410

Tiay.

388
339
300
L33

59%
394
395
396
397
398
399
400

402
403
14 | 404
405

41408 1
322
N o4 |

40

401 3

Mag.

23
22

19
17
15
13

1l

oo T O S R =T W

10
12

18k

45

29
31

b
[y

w5 Lo
=

[ SRl R o
e 1

21

[l
N TR RS =L

429

351
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Day, ‘Mag. Day. | Mag. || Duay. Mug.i Dy,

Mg Ly, | Mag.

511 | 14 | 529 | 25 !54? 8 || 565 ‘12 bass | s
512 1 14 | 530 | 26 | 548 10‘ 566 | 8 Rl 34
513‘ 13563126 | 519 ; 13 \5@7 6ohoasn | g
514 | 13 || 532 nh 81

255 ‘ 550 | 16 || 568 |
515 | 18 1633 | 24 | 551 | 20 | 5gn
516 | 13 | B34 | 28 | 552 | 23 270
517 1 13 | 535 | 21 || 553 | 28 | 5 il
BI8 [ 13 5 536 | 19 || 554 | 29 872
519 | 14 || 537 | 16 . 565 | 31 | 5 3

wEH i~ oo —

520 1 14 | 538 | 14 | 556 | 32 | 574 | o | 11
521 | 15 | 539 | 12 | 557 | 32 | 575 8
522116 | 540 | 9 " 558 | 39 a760 1 3
523| 8 1541 1 7| 559 | 81 |59 17 3
520 119 ) 542 | 5 | 560 20 875 | 21 | 396 2
525 1 2L [ 543 | 5\ 56l | 260 5r0 | 5 | Ayt | 2
526 | 22 | 544‘ 4‘|562 93 | 580 28i|598 2
B2T | 24 | 545 | 5 . 56390 | 581 | 51 | 509 | 4
528 24| 546 | 6 L5§4W 16 582‘ 33‘]600 f 5
L__ N ;

- - %

o

We have first 0 ind “She mean value and standard deviation
of the observations{ By the methods of Chapter VIII we find
A OMean value =17,
Standard deviation = 8-63.
As there dré on the whole about 21 maxima and 2] minima
In the 600 days, we suspect thab one of the most important
Pﬂrjiiﬁﬁt\fill be not far from 600/21 days. We shall thercfore
'fs{{@}g“‘;'i‘d periods ranging from 20 days to 32} days; that is, we
el give to pin suceession the values 20, 204, 21, 211, and 8o
ANon to 321 Taking m =17, the summation process for, e.g., 24
\”\ " days i3 ag follows :

[TABLE
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The sums at the foot of the columms are the minmbers U, Ul,
Uz,' -+~ eorresponding to this trial period.

When the trial period is not a whole number of days, we
modify the arrangement slightly so as to scenre that terms in
the same phase are still in the satme vertical colwmun: thus if
the frial period were 81% days, we should write the values
corresponding to days 1 to 31 in the first horizonind roghand
the values corresponding to days 32 to 62 in the second
horizoutal row, then we should  onit alt-oge!1l1gr<?‘-’ﬂ§ valug
corresponding to day 63 in order to Iring the valub-Correspond-
ing to day 64 to the beginning of the third rody, nd =0 on.

The table of values of the #’s obtaine 'bg} the summalion
process with the different frig] Periods Q\g} ollows :

N

w\J/
{
¢
o~
‘!
AN
£ )
Y
o3
RS
N
*l
A g
“"”:
LN

\
~
o v'\ J
A
‘\ )
O™
KN4
>
a4
$ v 4
w\’sl

[TABLE
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We have next to find the standard deviation of each of
these columns and divide it by m (== 17) in order ¢ obtain the
standard deviation of the corresponding column of means
My M, M, L

Now dividing these standard deviations ol the 3M’s Ly the
standard deviation of the w's, which was found io Lo 5:63, we
have a table of values of the correlation ratio n vorresponding
to the different values of the trial period p. Tl valugg of 'y
may ovidently be obtained at onee by dividing the c-f';u;}\’éép}md-
tug standard deviations of the columns by 146-T1 (= Mok 8.63).

The results are as follow N

Period. | A | Slandurd 1 ”' Peciog, | AvChmetied ??é]| »
oo | 20| 404z Joo0as | opp | aadd | 1gsay o115
20% | 2035 110171 | 0-0go 27" L4801 | 29.132 Y]
21 | 2846 | 10-018 |o0-068 \ 2 206 6590 | 0-045
21% ‘ 293-7 7947 [0:054 1 AWM 29a.9 58197 1 0-397
22| 295 17634 S 0-118 18281 | 292.2 | 169019 | 0-743
224 | 203 @72 ‘0‘0467 v20 | 292.3 | 126.481 | 0-862
23 ] 2949 | 31.630 | 0.2 291 | 231 106-080 L0723
237 | 2947 1 69-280 |ouha | 30 1 2026 | g1s87 ;0420
24 1 2002 | 83.856 40372 0L | 2019 15-648 | 0-109
244 1 2043 | 625670426 | 31° | 209 17481 [0-119
25 | 203 23408% 0158 | 311 | 2932 20-034 | 0-198
251 | 200 W8T | 0-052 | 22” | aprp 16972 [0-116
261 2948 D23361 |0-181 | 221 | 29; I 4020 0027

Thesge vAlues of », plotted against the corresponding values of
P, give shesperiodogram shown on p. 357,
&

In\f{le ‘practice of periodogram malysis, since saving of labour is
worglimportant than greal aceuracy, 11 is not unuenal to omit altogether
thdhdalenlation of the standard devialions, merely ploiling the periodo-

B from points obtained ga follows.  As alseissa take 7 and as ordinate
\ Jtake the differonce between the greatest and least numbers of the sequence
_Uos U, T, .. Up_y 1 thiz diference is ealled the oseiflation correspond-
g to the trial period . The table on D 358 givee the oseillations
“orzesponding to the varions values of p, between 19 days and 33L days,

the number m, being taken Lo e 17 th roughous,
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It will be seen on Dlotting the o.%gili‘;i-ion against p that the muve so

obtained elosely resembles the
and laborious niethod of comp

It will be seen that the periodograin in our example shows

petitdogram obtained by the mors sceurate
wting the standard deviations.

bwo high peaks at s 24 and p= 29, with the side-peaks heloug-
i a diffraction-pattern in optics. Wo are
therefore led o infer the exisbence of two constituent oscilla-

ing %o thess

tions, one dwhich
the othed.bf appro
Periods More exactly,
qqi&)ﬁburhood of p=
Jofl in—say
M\fff:sépal'a.ted f

23.8, 24.0,

This will give a mue

has & period of approximately 24 days and
ximately 29 days. In order to find these
e repeat the work so far as concerns the
24 and p=29, but faking a larger value
about twice as great—and also taking values of p
rora each other by smaller intervals,

Thus we might
now calculate the eorrelation ry

tios corresponding to p= 286,
24.2, 24.4 when 84 horizontal lines are taken.
h better defined peak in the neighbourhood

of p=34; the peak will in fact be only half’ as broad as in the
Previous periodogram.

It may he remarked that
inspection of the Graf perioda
the pealks corresponding

if two periods are found (from an
gram} to be so elose together t-hflt
b0 them run into each other, it will in
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any case be necessary to repeat the work with a larger value of
s, in order to diminish the breadth of each peak and so bring
the two peaks clear of each other. This is analogous to the
corresponding device in spectroscopy, of employing a grafing
with a larger number of rulings in order §0 resolve two lines
which are not distinebly separated by & smnaller instrument.

In order to geb the periods still more exactly, we must study
the phase of the consbituent oscillations (as found by Youriers ~
analysis) ab ditferent epochs; for if there is a slight error in
the assumed period, the consequence Will be that the phases{
of the oscillation, as determined from different « stretches Tof
rmaterial, will not b together accurately—the oscillationy will
appear as if it were continually being accelerated or;retarded
ip phase; an jmproved value for the peried is th“e’r;\suggested
liy the amount of aceeleration OT retardation of phase. In
this way we find that in the present exfataple the periods
are exactly 24 and 99 days. We thep’}a}l‘d together the twO

oscillations (i.e write down the ng};ai:»ei's M, Ml,_Mz, ... for
the first oscillation in one horizpatal line, and write down the

numbers My, M, M, - - for She second oscillation in a hori-

zontal Jine below them, ajnd’?add) and subtract the II'esult frolm

the given ohserved vallies, in arder to see whab 18 left still
: L)

unaceounted for. “Rﬁgs

Day "i"23456'?

MK
24-doy tqm..lﬁ-f} 8.8 20-8 21-8 02.9 28-9 23

99_dayferm 25-7 08.7 27-8 27-7 o7.7 26-8 26

_____,_,_.—-—'—'_'_'_'_'_'_'_._._._._;'_ - [} 5

L, 425 45D 18.6 49.5 50-6 50-3 499 482 :15 2
Qe in graph 2528 31;@;;@;:?%_—"?‘—]__53_
NS TR 6 1756 176 175 17-3 172 17-2

O i 7.5 17-5 17

: 5 16 17 18

Dey 10 11 12 13 14 1

24 doy term 22:1 91.1 19-2 173 15-2 14-2 12:2 11-% lgz

20-dey term 19_-9__1_7-8 15-6 13.5 11-4 Q-E 232 ]Zz 16_§
Sum 42.0 38 26.6 237 0 0‘1

o 34.8 30-8 ;

) 1 4 10 7 4 2
Given ingraph 25 22 18 14 O
Diff. 17.0 16:9 16:8 6.8 166 167 16.6 16-7 15—8
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Doy 9 20 21 22 23 21 95 25 .27
24 day terin 10-2 101 11.1 12 14 14.9 16-8 ]1: 20-8
29-day torm 6.8 6.9 8.1 092114 186 15.7 l?ﬂ_.“‘q_é

S 170 17.0 19:2 21.2 25.4 98.5 39.5 St d40.6
Giveningraph 0 0 3 4 8 11 15 i 23

i 170 17:0 17-2 17-2 17.4 17.5 17.5 17.5 1

Day 28 29 30 31 32 383 34 35 3G

24-day term 218 22.9 23.9 23.9 24 23.1 29.1 QL-J:\JE.F-2
E

8 27.7 277 2aN"25.4

20-day term 21-7 93.7 25.7 26.7 27.
Sum 43-5 46:6 49.6 50-5 51.8 50.8 4%«8}"—1'{-'}’ 4.6
Giveningraph 26 29 32 33 24 33 24 A0 2T
DIt 175 116 176 176 175 18N8 177 (76

The numbers in the lagt line arc\nearly constant, the
deviations from constancy being n ‘;ﬁore than mighé pe
expected from the inacouracy of the numbers taken to Tunee-
sont the 24-day and 29-day ternds] so the Frven observadiip
may be aceonnted Jor as the ?‘g&’@}kﬂ%é of' two constifuent os
tions of periods 94 and 298] diys vespectively, together arith o
constant term,  We thercford write

o

fu-t=a+)8‘(3@$§§+ y 8in 2—?.—' 8 cos —“;_If +esin ij,
\\ .
the constant ofaust have the value 17, since this is the wean
value of e_..t,,alﬁd' the constants By, 8 e may be determined by
least squagps. The final resul is
7\

3
T, v
e

AN a . 2=(l+3) . 25(t=1)
O =17+ 10gin 59— + 7sin Y

~SWhere ¢ denotes the time in days.

176. Bibliographical Note. —Methods for the discovery of hidden
periodicities have been given by nany wui bers, bepinning with Tagrange *
in 1772 and 1773, Tagranges method, which has been improved by
Dale,t is quite different from the method deseribed above,

In the latter half of the nineteenth century attention was given

* (Huvres, 6, 1. 304 ; 7, I 585,

T Monthly Not. R.A.Q 7a {1814}, p. 828. Caree ang Shearer, Edin. Math,
Tracts, No. 4, p. 41, :
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elhiefly to wethods which depend on the prineiple that (in the notation of
§ 173) the sequenee Uy, U,y . . ., Up_, preserves any periodieity of period
3 that may be present in the observations, and does not preserve other
periodicities.  Methods of thiz kind were originated by Buys-Ballot*
and developed by Sirachey T and by Stewart and Dodgson.} Stokes §
sugaested that in order to test an observed function uir) for a period

L
:—-T’ the integrals J- () sin nade and {%{23) cos nade might be caleulated ;

if a true periodieity of ufz) Is represented by the lerm ¢ sin (n' 4 a
tlien when n is near n’ the integrals will involve terms

2in’ —n; ~
N/’
whieh are of large amplitude and long period, and are i‘.hereforg ~r§sgdily
Aeleeted., e \ Ik
Sehuster discnssed the matter in s number of import;g@’\memoirs,ﬂ
in which the perivdogram was introduced. Let a fudction ufzy of the
fime « take the values gy, ), Yy g 0 o ¥n_1 at cqul{igtant values of the

1iie vy, o+ & B+ 20y« o T fp—Lw .’:\.\ }
n-1 AN
Let A= Doy 008 —5y)
F==0 ,_".P
nslay 2ms
B= Z\pein - —,
G;i)’ P
S
and let N, .

.\\‘,.'
Theu the value(df S in the neighbourhood of a particular value po
was defined by (Feliuster o be the ordinate of the periodogram for

that pericd, , Ltywas remarked by Craig 9 that Schuster's formulag were

equimlent.\fé\those arvived at in finding the correlation evefficient £
he' 5¢ i FEUETICCS
bet-x\'ecu\Qm~ SEQUENIEE Hyy Mg gy - g1 @0 the seq
<\
\\ 2 dm 6w
~Ne o cps—, GORT e e
P ¢ \ 1, coe Py e PR
\¥
\ ’ . P o Ar " &
in o  sn——, SOl o-oe s
and 0, =in _ﬁ , &in X I3 >

* [es changenienls périodigues de lesmp raiure, {Ttreckt (1847} ©. a4,

1 Proe. fi.S. 26 (YHTF), po 210
t Proc. B.5. 20 (1879), p. 106

(a7 9, 803,
§ Prog, A5, 29 (1879 PP 122, _ - . 15 (1900,
|| Porvesivial Megnetism 3 (1898}, . 133 Comb. Fhil. Trans

i . 68.
w 107 5 Proe £.5.77 (1806), p- 1863 Phil. Troans, 208 {1906}, p
o Brit. Ass. Rep. 1915 1 416.

¢ i g 1 and - n' — n)z+ o] LAV
. —sin {{n' — e+ a}an -—g(ﬂ,_%)cas fa" —mjm+ag, .\”.\

N\
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H. H. Turner * has published tables for facilitating the cOmputations
of Schuster’s process,

A mothod depending on the formation of diflerence (dations has
been suggested by Oppenheim,t and mechanieal methods have been
described by A, E. Douglass f and W. L, Balis.§

The reader who wishes to Pursue further the subject of (Lis chapter
is recommended to consult a valuable memoir by I, Burtels, -~ Random
fluctuations, persistence, and guasi-persistence in geophysical sod cosmical
periodicities », Perrestrial Hag. 40 (1935), PP 1=G0, and o nicmioir by T, K,
Stemo and L. Campbell, * Propertics of Lhe light curve of Zr Cwrni 7,
Annols of Harvard Coll, Ops. 90, No. 6 (1034). . alsor Drolel, Petigelogram

\/)

analysis with the phase a chonce variahle *, Eeonometrica ?@‘Q(i."}), p. 57;
G. T. Walker, © Period-hunting in practice ™', Quert. J. I Soc. 67
(1941), p. 15; K. Stumpf, Grundlagen . Methoden AL P fveden forschung
{Berlin, 1937}, AD
w7

* Tables for Fucilitating the Use of Hurmonie ﬁiw?ys{a, by Tl 14, Turner
{Oxford University Press, 1913} \

t Wien Sitzungsber. 118 (2s) (1009), p. 82 *,s}s{'. F. Hopfoer, iid, 119 {2u)
{1910}, p. 351. ¢

T Astrophysical J. 40 (1914), . 326; 41”(%15), 173,

§ Proc. R.S. 99 (1921), p, 283, o\
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CHAPTER XIV

THE NUMERICAL SOLUTION OV DIFFERENTIAL EQUATIORS

177. Theory of the Method.—The best method of inte-
grating differential equalions numerically is one devised by "
J. C. Adams;* it is applicable to equations of any order, but N
for simplicity we shall describe its application to equations NION

the first order. O
et the differential equation be ;”.f} )
dy_, i
L fly.7), o O

with the initial condition that ¥ isto havg,ﬂ)a‘ value 7, when
» has the value x, Let o &, Zy s L% De & sequence of
valucs of # at equal intervals w« apa.rg;‘%ve shall denote the
corresponding values of 4 by ¥e yl’,ff;,rg, 4, - - . and the corre-

. d: A\ =
sponding values of ?!JEZ% by Gl P T3 - - The differences
Wk "\ .

(7, — Yo)» (2 = ), € willbe denoted by Ay, Ay, ete., a8 usual,
Tt will generally be, fond convenient to choose the interval =
go small that diﬁ’gx%tﬁes of order above the fourth {or, better
still, differencogyoi” order above the third) may be neglected.
The value, \y;,‘.\b:eing given, the problem s 10 determine

Hr Yo O .
Thefirst four of these values are determined in the following

waf ;';by differentiating equation (1) we have
O
?y_of A
N\ A A +fay (2)

* Theories of Capiliery Action, by E. 13ashforth and J. C. Adama: Ca.mbri‘dge,
1883. The method has been since developed n Russian memoirs by A, KTll.Oﬁ:.
. Stormer, Comples rendus du congf. it Gtrashourg, 1920, develops a similar
method for e:lua;tiomq of the second order. For more recent dcf*glopmcnts cf.
R. v. Mises, Foitachr. f. anged. Math. 10 (1930), D §1; (1. Schulz, ibid. 12 (1932},
p. 44 D. B Hartres, Manchester Lit, and Phil, Soc. Mot % (1832), p- 01
V. M. Falkner, Phil. May. 21 (1936), p- 624,

368
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which expresses ::ZTZ in terms of » and ¢ Dy diflereutiating

. . By,
(2) we can gimilarly obtain ",—J in terms of » and y, and g0 on,
In this way all the successive derivatives of » with respeet to
2 are obfained ag known funetions of » and ».  Thus in Taylor's
exprilgion

R O S A AW Gt A "
y=tot (-2 (dfﬁ)* (R G @
L\
dyy (A _ A\
the quantities 7, ( dm) I:,- ,. .. oare all ](1‘11;\\-1_1,’9:11,?1 there-

L 3
77%G

fore 4 can be found for any valuc of » near te\ 3 By sub-
stituting w, 2w, 3w, 4 for (n -y} 1n eniu..th ™) we obtain
the values of #y, ¥y 7 ¥y With as greal deptiracy as may be

desired ; or alternatively, we may compuber Ay, &0y, . from
the equations \ v
P dzy I 33)' :‘,, a0 'r*.“;y\. ey r,-',.,g.‘al-!;,\
At ‘“( ) + 2(&3\ F(au E(«\r!‘.:ﬂ')[] '1_:)(,F ©
A2y ] ;
A= ( } ’ﬁ(d 3, T
By - ud R
A= Krh Eo
\
ﬁ4y0= o \
ﬁlayn= { Q;\ g
x\"
”\s

D@‘ll’en caleulate ¥y, g, 7 ¥, by building up the difference
‘ta}ﬂe of the #’s. Then from either the equation

¢\'
a\

\:

or the equation
d’!‘ 32 .‘ — r ; i
o= (), +olomad (g, (), =
we obtain the values of ¢, 7,, ¢s, ¢,

Now with thege computed values we form a difivrence table
thus ;
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7 Ag.
o

Ag,
/51

Ay
iz

Agy
T3

Agy
Ha

The further process

Ay, Mg, Mg
A2y,

&,
Ay A'gy
I Ay
Ag,

N\

.Y
congists in extending this tazblés\by
-4

adjoining new (sloping) lines. To effect this, we reu;fgrk that

fo the sy mbohe formula -

\

/s

r(3 ) pe
) ~1+—AE 1+-——12——AE By,

there corresponds the inperpolationt forrgula (the packward form
of the (Gregory-Newton X formula) O

gl + rw)=Gga+ %’&qn

2
sf—j‘&g et T+1) 2’;+ )Nﬁ'n 3

(+1)1(72-F82}(?+5A4g @

K
\ Fopy 8 d
Now Pe \ Y1~ Yn" f e
\ }¢ o
.’\;s.:\ -'=]--—- gdx
=~ U
\*“;
{\ Lg(mﬂﬂw)dr

\
Y
N

o
"4

/

Ypr1—~ Y= Tat g

and in partwular

Y5 Y™ =f, T3 -Agg ¥ 3

\M\’  gubstituting the value of ¢ @t
" the integrations with respect 10 T we have

._ 3915—1 +

+rw) from {4) and performing

15-91'.\29',1 2-1’ AQ11~

LBy g B

5, 3
‘Algyt g 3 A%y ‘7‘)0
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Every term on the right-hand side of this equation is known,
so by means of it we can compute ¥y The cquation

%5 = 67 (Y, 75)
enables us now to compute ¢, and so to adjoin a new sloping
line to the difference table of the 7’8,
Next we put »=>5 in equation (6) and use this equation to
compuic ¥, ; then from tho equation A\

e =17 {Ye 25) A
we compute g, and so obtain auother sloping lmg} Y the
difference table. A
Adamg’s process consists simply in the 1'epe’§iti§Ji_1 of hhis
operation. It may evidently ho extended {8 dny number of
simultaneous equations each of the first ordex’such as the jxir

dy AY;
A, 215
o p(1, 2, "% &

dz ANV
(-f;rj: 1;’/(3{,’3.355),

and so to any aystem of ord.izq;a;i-:y“differential cquabions,

Guven the diffrential equution
QS _y-w
N\ dv g+
4 \’.,
with the thitiul 1;:15&@«6 =0, wy=1, fabulate the solubion Jrom =9
o z=10032, e .
We huve b{’s,mfcessive differentiation
N 4

\d v oy — ¥+a=0

{ 0 Y2+ oy 410,

%’ g B by g ey =0,

.‘\ 3y!i’2+ 4?!1?;:” +yyw _]__xyl" + Qy.'n _ 0,

” ‘:":.' IUy”y”’ + :"}y’y“‘ + " + v + Baptv 0,
~O VOr™2 4 LBy Y™ + 6y 4yt a4y o,

} s
whenoo the initial values azc

o' =1,y =2, y s, U= =60, 1" =640, g = _ 8940,
and hence the Tavlor series i

4 ] 18 221
=Tdw—uld g8 e, O 221
.y 14-a -b‘.-gf 2.1-1-3 18-1'4---

» 8 221
with ¥=l=2od 42 10254 —3(—]@1 - —3-335 +. ..
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Taking w= 002, we have from these series

= 1-000000, gy="0-02,

4, = 1-019610, g, = 0-010230,
Y= 1038479, dy= 0-018516,
yg— 1:056859, ga=0-017851,
y, = 1:074195. = 0017228

The remaining values ¥, 4 i
! ; 5o Yo Fop o e are computed from a differ
é&%}le of’ the g’s, uring equation (5); the eorregponding values g, gﬁl g e
) 1 1 o
cing given by the formula g, = w{y, — 2 ) Y, + %), We thus :rrive

at the following results:
Al AR AS Al

we=0 1 =1-000000  ¢,= 0-02
- 770 ¢
g =002 =1019610 ¢=0019230 56 A\
: —-714 A
gy= 004 yy=1-038470  ¢y=0018518 g9 O o
- — 665 & X
2, =006 y5=1:006659  gg= 0017851 FENN 2
ke N\
B =008  y,=1-074105 ¢=0017228 _ L&37 2
_ ;»5:% -3
5= 010" y5=1:091126  g;= 0016643 QO 34 -2
) *- 552 -5
tg=012  gg=1107490  gg= 0-016090 29 4
ONY -2 ~1
wy=0-14 3= 1123317 g, = 0015567 28 -3
— 495 -4
g = 0-16 gy 1-138632 (= 0-015072 24
¢ T}

E\N
ng= 0118 yy=1'103469  g= 0-014601

1y =030 Y1 13167842

The abovevalie of 4y 15 correct to the last digit.

178. Bibliggraphical Note.—Of the other methods which have been
pmposed}ffor integrating differential equations, the best known iz that of
Rungdalath. Ann, 46 (1895}, 1. 16%, improved and extended by Kutta,
Zeﬁl{sf 1. Math. u. Phys. 46 (1901), p. 435. Seealso Lindelsf, deta Soc. Se.

#n. 2 (1938), No. 13.

A rnethod which permits tbe det
error involved has been deseribed by Steffenser,
Altuarictidskrift, 1922, P 20.

On the nnmerical solution of

Piasad, Phil. Mag. 9 (1430}, 1074
t dlifferential equati

crmination of an upper limit to the
Seirtryck ur Skandinavish

partial differential equations, of. Gorakh
A valuable monograpk om the

pumerical integration of &l omns, both ordinary and partial,
written by A. A, Bennett, . E. Milno and H. Bateman, W&s published by
the National Research Couneil; Washingten, 1.C., in 1933.



CHAPTER XV O

o
SOME FURTHER PROBLEMS )
A
IN this ehapter we shall give a brief treatment Of variona
topics which cannot be discussed more fully hele ‘on necount

of limitations of space, . ,.:\‘
179. The Summation of Slowly - Convergent Series. —
Many of the commoncst series of le)su: COnVErge very

slowly. Thus with Brouncker’s serlbs for log, 2,

1 1 101 1
1 -
LS TR Ae T Al xRl TR
& hundred terms are require:d to give the sum accurately to
two digits; 10,000 terms are required to give it accurately Lo
four digits; and 1,\&@8 000,000 terms are required fo give ik
accurately to o Qd!ﬂ'lfﬁ

Btirling,* m%?o() showed how a series of this kind may !
Lransformed mfo one which is rapidly convergent.

His ,Ige}bhod is to expand the general term of the ziven
sermv&s a series of inverse factorials; thus the gencral ierm
of@rounclwrs serles is w, _4394( I Iy where =1, 2, & . ..
and this may be expanded as a serios of inverse factorials in

\ ) the form

v L 1 1.3
= Pl +l} 2Bl +1)(r+2) 2+ D+ 2)(2+3)
1.3.
T e iR
‘Now form the sum a -+, 4%, ,+%,0+. . . The sums

* Meth, DD (1730, Prop. II. Ex. 5.
) 368
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arising from the individual inverse factorials can each he
summed by tho well-known algebraical formula, and thus we
obtain
1, 3 LL3
“ 0k Pafe o+ 1) ' 2 (J:+1)(.r+2)

1.1.35
2 + 1)(fc+ )=+ 3)

uw + u:ﬂ"'!. + ’lr'ox_:_z +. ..

+ —

In this formula put #=131. Thus

1 1 1 1 ! 113 ,
S ST IU 3l A\
27.98 " 4930 " 3192 " P ETET R R TETAAN

' 335 4
4 -
+25ﬂ 20 A1 gs_{c_""
IR NE

The series on the right is rapidly convergenﬁ"g}nd yields the
sum (-018861219 . . .; and the sum ot‘ the €rst thirteen terms

' .o 11 (N
of Brouncker’s serleé 19tsgt -+, —% is found by addition
to be 0-674285961 . . . Adding thase sums, we have finally

for the sut o mhmty of Brounckér 8 series
log, 2= @ 893147180,

Stirling’s method was «extended by himself (Meth, Diff. (1730),
Prop. IIL) to the case Of\selles whose nth term involves an nth power.
Another method was giver by Kummer in Journal fiir Math, 16 {183,
P 206, See iurt].l\s%(,&tzﬂa:n7 Mém, Belg. cour. 33 (1865); Markoff,
Mdm. de Si-Pét % 37 (1890); Andoyer, Bull. de la Soc Math, de
France, 33 (19 P, 36 ; and Bockwinkel, Nieww Avchief voor Wiskunde

(2) 13 (19213, p. 383,

180 Prony 8 Method of Interpolation by Exponentials.*—
We&hill now show how a function «(x), which is specified by a
.tgbj'e of numerical valucs, may be represented approximately by

“\a/sum of exponentials
\ ’ x(‘.)=PeW+QeW+Fa’”+. . .+ Ve®,
where P, Q, R, W V.0, 9,7, , v are constants which are
chosen so as 1;0 give the dosest posmble representation of the
given numé‘rmal values. Leb the given values of «{z) be
Kps Kpp Koo Kgy v =+ corresponding respectively to the values
0, w, 2w, 3w, . . .of the argument z.
* A, I. Prony, Jour. de 7' #e. Pol. Cah. 2 (an IV.}, p. 29. "
{D3lL)
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It «() could be represented ennetly as a sun of ,
exponentials, say

Per” + Qe+ Re® 4. . 4 Veor,
then «(z) wonld satisfy a lincar difference equation of the form
A.-cﬂ_;_N + BK-,L.H_‘_ 1+ OK;H_M_Q +. ..+ :M.-\'” =],
where che roots of the algebraic equation
Azt +Bar-l4 . . 1 M=0 O

would be epw gz | | g Prony’s method, which isdadel on
this fact, is to write down a set of linear equations )

Ak, +BKM_1+CK’L_Q+. . .+l\‘1x0.‘;’0',"‘;
Aky g1+ Be, +Crxu 1+, . .+ Mg 20,
Axyie+Bryyi+Ce, . . M, =0,

eNdl

b

On

(where the quantitics «,, «,, Ky, k3N . are known, since «(s) is
& known tabulated function), and” by the ordinary method of
Least Squares to find the Jalues of A, B, C, . . ., M which
best satisfy these equaﬁién;;; then with these values of
ABC .. Mo fclrlﬁ ‘the algelraic equation

AP Bl M =0

and find its 1‘90\} ; these roots will be erre, gzv | | . % and
thus p, 4, 2”'1": o are determined. Knowing p, 4, . . ., 2, we
have a sebyof linear oquations to determine the coeflicients
P, Q.\‘:\V and these also are to be solved by the method

of Q@sﬁ Squares,

8 EBr L—TF from the dada
0\' \
Joa | 10 ‘ 20 ‘ 30

40 50

‘ 60 | 70 | 80! 90

«z)| 6460 6090 | 5642 le_ 4417 | 3623 | 2401 | 983 142
we represent w(x) in the form
Pu? 4 QB% + Ry,
prove that ihe best vabues of o, 3, v are the roots of the cubic
i} = 3-0209362 + 3- 787702 — 1.68664 — 0.
(W. 8. B. Woolhouse)



SOME FURTHER PROBLEMS 371

Er, 3—From the date
z | 0] 8 ‘13|24J|32!40
| .

——
() \ 248 | 345|421 | 481 529 | 569

show that
x{z)= 629-3763 x 100144382
—381-3767 x 0-9670412%
+0-00046064 x 1-2361997%

ments.*—The formulae of interpolation for functions of 2 gingle
argument, which have been established in Chapters LJTEL, may
be extended o functions of two or more independént argu-
ments. Thus we can introduce divided dijferengeg)(ef. § 11) for
a function f{w, #) of two arguments by the de@;ition

(N
__f;c‘a—l(m, #) "fx,z\.—\'k(&},? o)
Jorl®, 7) Y=
f:c—l, -’\{3}9 @"J_,:f;t— 1A (mm ?/)
S 2,

>

and obtain a formula analogogé,%b Newton’s formula for unequal
intervals (§ 13), namely, £

fle ) =l ) (O
=Jooly, %‘}Sp}m - a)fol® ) + {y — V(@)
=1 oo(x,ts'{j{r)"l' (- :?31),]010(56, W+ (y~ yllﬁ)l (=)
=J,P (}'L;’ Uy + (B - Zy)f10{%o )+ (@ — ) (& = g} fon e, )
T - nlfals + - )= 9)
N : + (4 — 1)y — Yl ool ¥
Nete.
Froth this all the interpolation formulae for a function of two
Q&réumenﬁe may be derived. Thus the polynomial of the second
degree, which at the places

{wy, 91) (2, 32) (@, 1a)
(#y 94) (g, )
(5'“'3, 91)
* 0f K. Pearson, Tracts for Compulers, No. III. {Cambridge, 1920};

i i i : . x of seq. of the
completed {by the discussion of some omitted caseq)‘m] THH ¢ :
Intrloduction {o Takbles of the Incomplete Gamme Funetivn ; 8. Narumi, Féhoku

Math, Journ, 18 (1920), p. 308

N
(F. Selling)

181. Interpolation Formulae for Punctions of Two Argir)



372 TIIE CALCULUS OF OBSERVATIONS

takes the values

i e h3
Ha, 2
31

respectively, is

T, 9) =y + ( VI +’_I"’.fm ){,U ) (_ﬂ}_ ._ The \
-y Xy—® Wy = e He— S

2
+ ( ’?11 4 2 . ‘I \I AN
R L B e L B A G zl’ ,
(o2,
1 s Hlaig \

i ((-‘ P AR CREN AN R CRE XA
. ’?22 - 2 )y -
+ ( ?;’ \%)thc D07 = i)

+( THi ’-‘13 \'r
(i~ 1)y — "f.a) '9’2 i')’1 Jz _,{3}\ "/1 (13— 75)/
= Y = thaie

r/2=1, Lyg=yg= — 1, we

In particular, taking x, = ?1'1 0 7
have the formula

e, ) =Jfo, 0+ 35( /10 —f—l,‘(});* e?;‘(.fn, 1—Ju, -1)
+ 307 f1, 0 ‘Q‘h ot/ 0) +ay( fo,0-So,1 -0+, 1)
+ 37 (fo \‘370 o+.J0, 1)

which is the besp }br general use when » and y are positive and
less than 1. tuﬂj

Similarly® e may determine* the polynomial of degree
which a.t\@‘e 3{m + 1){m + 2) places

\\\ Ep 1) ) - @) Cuis )

%

N (o ya) (g o) -+« B 7

i

{

O

s,/o

(’{2"1’ Yo 1)
takes the values

T ;v Tl Ymtit
the o2 v - s e

M, ant1-

* CL Q. Blermenn, Monatshefle fir Moth. 14 (1903), o211
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C;)r.lsldering now the case when the entries are given at
equal intervals £ of # and equal intervals i ]

_ ; 3 g of 7, and in
the notation T g

Asf=fle+ & y) - fiz, y),
2&*}" =/ g+ m) - Az ), :
Apf=fle+& y+u) - flo, y+u) - flz+ & ) + 1 1),

ote,

the above generalisation of Newton’s formula for unegfial

intervals becomes "8
JEtms ytay) :‘ﬂ’«. ‘
=/ y) + mBef + nlof+ m(%_l)ﬁzgsf + w’é‘i‘a;gmf

#{n — 1) m{m = 1){m ~ 2 ) -1
s A { 2'_')'3'(_‘“" %) vt ?n-@;—)ﬂmesnf

W

mn{n—1) n{n—1 nv2

+ T A+ ( 2'§""L.' -)‘/.\quf+. .

This, which may be regardezdﬁé."tﬁe extension of the Gregory-
Newton formula to funchiehs of two arguments, is due to

Lambert.* Symboliqgg’} it may be written
S+ T nn) = (L+ A1+ Az, ).

Tt is sometiped-practicable and advantageous to reduce interpolation
of functions;of‘two argnments to linear interpolation.'j' For example,
if wlr, y) ¥Aabnlated for quinary valoes of » and y, the w corresponding
to any ilegrsl values of m and gy may, by 2 proper choice of origin, be
redpge)}ﬁ) the form u{ k%, +4), where ¢ and & take one of the values
1 audd2.  The value of u ean be found by interpolation along the line
08 ¥alucs of the form u(+ bf, + 55): for example, w(—1, 2) way e

“\Yeund by linear interpolation along the line of values . . . ul — 5, 10,

N/ uo, 0), (@, - 10) . . .

B 1.—Complete the accompunying table on the assumption that third-
order differemces are everywhers 26ro, and cxpress the labulgied function as a

polynomial in fwo variables.

¥ Payiriige, Part TIL  Cf Lagrange, Nowe. Mém. de Berfin (1772), reprinted

(Kuores, 3, p. 441,
+ Eldertom, Biometrike, 6 (1008}, p. 94 ; Spencer, JI A, a0, p. 2995 Burn

and Brown, Blements of Finile Differences, §§ 148-154.
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e=0 "1 7 2 -3

y=0| 315 9
2| 3 :
s' [

I ~

N

S A
¢
B 2.—The following table gives the téme (in hours, minites . Nyt )
corresponding fo certain altibudes (&) af the sun in varivus derbirting, )
-\

at & place in o certarn latitude, CN
a=10° : 14° ‘ 180, LV 23
! $ ;_-____ .

§=90°| 6% jlm uge | B BOm 17x 5RO oM g | 7 Arepas
15°:5 &5 41 |5 35 505004 30 (4 5L 17
10°06 40 16 |5 19 46sN 39 37 14 89 v
86 24 a0 |5 4 AONM 44 44 23 20
ol 9 b4 48 @9¥ 4 27 39 ‘4§

Find the time corresponding foho = 167, = 12",
o }'I-?:.sn-'e-?', KA 15m S04
Hind wlso the lime corvespdmiiing fo o =20°, §=14°,
A [ Ansuer, 5% 1 308

Fs. 3.—The condtrubtion of izobars on meteorologieal charts essentinlly
involves in\-‘erse’km-po]ation with two argumenis.. The ordinary con-
slruckion assumigsythat, within small intervals, the barometrie pressure is
a lincar funclivn of the co-ordinates of the place. A more accurate cor-
straction, dng to Thile [Tidsshr® 4 (1872), p. 87], which is speciuily
nse'fu]'akéa,;- maxima and miniina, s this. Three neighbonring places of
obsg’l\(aﬁon are vomnected by lines, and on these the peints are fonnd
w.}te}e, according to the ordinary methed, there would be a certain buro-

Justric pressure v The line joining any two of ihese points cuts the
v o - . . . 1 . :
t"f.mrcumsmbmg cirede of the triangle in points which Tie on the isobar
belonging to the pressurc .

Shoe that Thield's construction may be derived from the wssumption thil
the burometric pressure may le expressed by o function of the form

t=a+ br 4 oy + A2 4 9,

182. The Numerical Computation of Double Integrals.—
It is easy to construct formulae for the evaluation of double
integrals on the same principle as the Newton Cotes and (auss
formulae of single integration (§§76,80). Thus when differences
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of the fourth order (in the two variables combined) are neglected
we have (by a double application of Simpson’s formula) ,

j:ady f: Fl, gy = (b~ a)(d - c){ Aa, &)+ fla, &)+, ©)
st L3150 54 (10
arlesd o)

This formula indeed is frue even when some of the diﬁ'erenéés’
of orders 4 to 9 are mof negligible, e.g. A A3, A2 AA,

T

AﬂAyii A8A2 A3A3
Ed 1 i T R ' 774

When differences of the sixth order are neglsébzad, we have
- ) W
Burnside’s formula,* O

J I v 510 90
AV
N DIORNL S T NN
N BRI NG NN

This is exact so long a8 (#, ) is a polynomial of degree not
exceeding 5, A
Q)
A formula similbl\\té”Bm-ns{de’s may be ubtained by a denble applica-
tion of Ganss’s Chreetterm (fifth-diference) formula. This also is valid

even when manysef the higher differences are ot negligible.

It is oftemddvantageons fo brcak up the field of the double integration
into scctighdand apply a formula to each section separately.

Yol siter formulae of W. F. Sheppard, Proe. Lond. Math. Soc. 31
(1899)0p. 4863 32 (1900), p. 2725 A.C. Aitken and G. L Frewin, Proc.
E@@., Math, Soc. 42 (1523-4); M. Sadowsli, Amer, Math. Monthly 47 (1840).

,,,\:'\;' U dxdy vl b
\ R 1.—Show that the value of [0 fo NE TR computed By

Burnsidé's formula, s 06641 .
[The true velus ¢5 0-0638 fo 4 digtts]

dfb'dy

Logl
. 2.——Show that the value of f [ Tig — af — 42 comprted by
i 0 S0 '\/ (2 s TJ:'

Burnside's formulo, 15 0-9262. o
[The trus valus is 09202 f0 4 digits.]

* Aoss. of Maths, (2) 87 (1908}, p. 166.

N
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183. The Numerical Solution of Integral Equations.-—
In recent years Integral Equations have proved to be of grect
importance in Applied Mathematics; thus it was by the
numerical solution of en integral equation that Knott was
enabled in 1919 * to deduce the forms of the seismic rays in
the earth’s interior by a rigorous mathematical method from
the observational data of earthqnakes.

Some types of integral equation which occur in Applidh
Mathematics are as follows:

(i) Abel's Original Equation.—This is

;(ﬁ(i};}f(m), O<p<LA0)=0) Y (1

7

N
A\
e\
L 3 N

K¢

where ¢(z) is the unknown function which jato be determined,

and f{x}is a given function. 7%e¢ solution of whis equation, which
9\

was given by Abel himself,} s 6
_ I 7 - .r: Qj!{‘%) dS vy
(i)(i-‘ﬂ) -—:_I- Blﬂ}???;[o" @ _mju (._.)I

When /(i) is given, the valueof 7(s) and of this integral may
be obtained without diffiduliy by the ordinary processes of
interpolation and numefisal integration.

(ii.} Inéegial Eg‘gqc’i?f;}ms of Abel's Typs.—These, which may
be regarded as a generalisation of (1), are of the form

X L (6)(n — s)dis = f(2), (3)
wherfgl(a;.)"is & given funstion called the nuelous, Sy is also o
gived {itmetion, and ¢(z) is the unknown function which is to be
ds];gafrmined. We need only consider the case when the nuclens

<\; Wk Proc. B.S. K. 39 (1918), p. 167, It was H. Baleman, Phil. May. (6, 19
{1010}, p. 576, who discovered the integral equation.

t Buwres (ed, 1881} p 11 (1828} und p. 97 (1825%. The fundamental
meaning of Abel’s result is most elear] ¥ seen if the integrals which oceur in it
are interpreted as in the theury of generalizsed different fation ; if W) is written
for T'(1 - plgp(m), Abel’s formmla reducos to tho simple statenment that if

(2) wer=ria,

then wim) = (;—) _pf ().

I
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«{x) becomes infinite at w=0, for in the simpler case, when
Fhe nucleus is finite at ©=0, the equation can be reduced
mnmediately (by differentiating it) to Poisson’s type (i1} and
dealt with by the methods appropriate to that type. We may
Lthen suppose x(#) to be such that 2?x(») is finite and not zero
ab & =0, where p lies between 0 and 1; and for the purposes of
numerical integration we can represent it, by the methods
of Chapters L.-II1, with as great a degree of accuracy as may
be desired, by an analytical expression of the form

w{a) =70+ o+ a2 +. . L+ @@, R\
Then * the solution of the integral equation (3)4s  \
gin pr (7 L Lo N\ 3
=< A - g £
o) = gL gas, (4
where \/

N T T o SR
(z) = = T yplot) + ) 7,(82) i\ ) 75 (¢},
and where a, B, . . ., v ure the rools af bie ‘afgebfm'éc eguation

F(a)= g + (1~ phege 2+ (LB plagn >+ .
+ ) (2-p) . .. (r-pla,=0,

and where y,(x) denotes the f;ai:bmpiew Gamma Funetion

74,

) =] #lgm%ds,
. .\?@@J 6]: ¢

This may be reggwded as a dircet extension of Abel’s original
formula (2), which may be derived from it by taking »=0. It
expresses th&; golution of the integral equation in a finite form
in termd ofthe Imcomplete Gamma Function, of which tables
have béeh published.
) \(I]I) Integral Eguations of Poisson’s Type—Thesc are of the
<‘f,‘.;orm . ‘
#0)+ [ (e)s(o = s)ds=1ia), &

where «(z) and f{z) are gi.ven functions, and ¢{%) is the unknown

funciion which is to be determined. Soveral different methods

for the numerical integration of this equation arc given in

* Wlittuker, Proc. £.5. 98 (1818), p. 367,

+ K. Pearson, Tables of the Incomplete Grsnma Function (1 92‘2).I .

(D311)
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Whittaker’s memoir of 1918,* and have been applied Lo the
solution of eertain problems in viscous fluid motion by Havelock.f
We shall here indicate the most useful of them.

Since the nucleus «(x) is supposed to be specified by a table
of numerical values over the range of values of # considered,
we may apply Prony’s method of interpolation by exponentials
in order to represent it analytically in the form of a sum of
0 exponentials

k(i) = Derm - e + . . .+ Ve, (d)"\

where (P, Q, . . ., V.2, 4 .., 1/) are consfants whigh™ aﬁe
chosen so as to gne the closest possible represenbatwn\ of the
given numerical values, Taking then this form \(5} for the
nuclens «(«), we shall show that the integral eq{&tmn (4) may
be satislied by a solution of the form

#e) =) - [ Ko~ %, (©)

where the solving funefion Kix) is alsg™a sum of p exponentials,
By
Kiz) = Aem + I’er‘}”wr‘ Ce?” C o+ Ne, (7

To prove this we remark ﬁlsﬁ that certain cxistence-theorema
established by Volterra(Sustify us in assuming for the solution
the form. (6), whereg K(‘n is now the function to be determined.
In (6) put «(=) tor x): thus
:‘1\” Hlz [K : — 8)k(s)ds
PN

whmh\gﬁ es the value of ¢(z) corresponding to thiz vulue
of

Putnmg ( - s) for 5 in the integral, we have
e\ ,,.’

N b(@) = k) — f K (s)xlz — s)ds,
n
Comparing this with the integral equation (4), after replacing
Ji@) by «(x) in the latter, we have
b(22) = Kfw),

* Loc. oil.
+ PRil. Mg, 42 (1921), pp. 620, 628,
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and therefore the pair of functions
#e)=Kle), /o) = ule)

salisfy the integral equation; that is to say,

f K ()2 ~ 8)ds = x(2). ()
In this equation substitute the value (5) for «() and the
value (7) for K{x). Thus we have N
Ae® 4 Befe 4 Cerv 4. | ¢ Ng® A
, N\
+ f fAew 1+ Bty g, . .+ New) oM
o % e
(Devr-rs 4 Quae-e 4, AV ar-uds
=Perr+ Qe+ . . .+ Ver \;,,\'\ o
Equating ceefficients of ¢ on the two si«ni:es\é'f the equation,
we have ’\\"
] ) e
! . .+l~+1 0,
a—p «—g N

and similarly equating coeﬁtu@n‘m@f g
P QN v
“4~. F—+1=10,
B-» fi p-w
and so on’; and th rq‘fore a By
algebraic cquatw&a\\m ,

S oo, Voo (9)

:‘\’:xr P w— ¢ -

» are the roots of the

\w
This eznbles us to determine «, 3, ¥, -
N%t equating coofficients of ¢* on thL two sides of the

0qmmt10n we have

N

\.' - S T | O
/ : w-p B-p v—p
Sirilarly L
AL, B N0 (10}

a_—_§+,8—q ' v=1

AL B X

a—9+)8"'” ) v




»\.
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Since (u, B, v, « « o v)and (p, 4,7, . . ., @) ove known, those
equations (10) enable us to determine A, B, .. ., N; and o
see that if the constants (u, B, v, - . ., ¢} and {A, BB, .., I,
are determined by equations (9) and (10}, the equation (8) ix
satisfied by the value (7) of K(x).

The value of K{») may be obtained in a more explicit lori
in the lollowing manner. 1f we eliminate A, B, .. . &
determinantally from the equations (7) and (10}, we have, o\

S R T S SR DI S O
a—p B-p v—p‘ ‘ B-p P
1 1 1 i Lo
la—g B=q = Tv-gq BN T v-g
. . . . . PN, |

11 1| ‘1 T !
e—v fB-v —y N Iy
—pBEl 1 v 1.
w-p - Oe-p
N
- 1 1
a—g v—f
1“ 1
\_.

The determ\mutn which oecur in this equation are of the
kind known as alternants, and may be factorised by known
meLho $* T’ertormlng the factorisation, we have

(u- a~q,|(a—}) A (a—’b‘)
je EEAN . ]
f@ Bl - )
S B-p)B-g) . B0, =p)-gr 1) (1)
BB B -a)-B) - )
Combining our resulls, we have the following theorem :
Lhe solution of the infegral eguation

10
i

B{a) + E(f;(s)x(x ~s)ds = f(m),

where the nuclens «(2) 15 supposed to be given numerically and

* The evaluation of alternants of this type is duc to Uanchy, Feerices
danalyse, 2 (1841), p. 151
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a‘? have been empressed approvimately by Prony’s method dn the
Jorm l
x(it) = Pe?* + Qe+, . .+ Ve,

is #(z) = /&) - £ "K{w - s)f(s)ds,
where

ep)amg)e.(a=0) . (B)(B=g)... (B=2) pu_

INEIE o _
(@ —B)a—y).--(a=¥) )(B-y).--(B-v)
_ (_J,i—_’p){_v—(}') e (v—‘iﬁ) .‘_’b:\
v-a)p—F) .- (V—ifﬁ e
ﬁr.m’fl where «, B, y, . . . v @re the 100l of the algebraicg e@aﬁon
h *, 4D
P QR ANAN
;}5+ﬁ+x—_%+. . .+5§-_—@+1~=0:

The solution of the integral equation{"é}hhs ohtained in a
finite form which adunife of computaiqioﬁ; }

Seo also Prasad, Proc. Edin. Mc’@."Soc. 42 (1924) 486.

(iv.) Iniegral Equations of QF;et’f}aolm’s and” Hitbert’s Type—The
numerical solution of integral cquations of the type

LN\,
gyt sl o)plelds = o
i

where «(x, 8} and f{i) are given funchions, X is & constant, and $(z) Is the

unknown funetioh, has been dizcussed by Bateman, Proc. E.8. 100

(19213, ». 44\1,' who gives references to the litersture of the question.

Seo also P Tricomi, Lincei Rend. 33, (1924), . 483, 83, (1924), p. 26, and

Nystr@\mm.. Math. 54 (1930) 185.

_~\84. The Rayleigh-Ritz Method for Minimum Problems.—

\m \A” great many problems ‘2 mathematical physics involve the

determination of an unknown function to satisfy the condition
has a minjimum valoe, Suppose for simplicity

that o given integral :
that there is only one independent variable &, and let the unknown
fanction y(z) be required to be such as to make
B dy d% A
J:Lf(z,y,%,@...)dx (1}

a minjmum, and also possibly satisfy certain further conditions.
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To solve this problem, Rayleigh in 1870% and subseguers
yearst devised the following method, which was alterwsula
elaborated in a celebrated memoir by W. Ritz.]

Let the unknown function be expanded as an infinite series »f
known functions with arbitrary coefficients {such as a Fonrin
series), say

y(=) = agy(®) + apfy(z) + agfu(z) - . .. 2y,

where {2}, fy{z), Pz}, . . . are [unctions each of which satisji"'u&-.
all the further conditions {e.g. houndary-conditions) which v
imposed on the function y(z). Then evidently a theoretical pri-
cess might be imagined in which the funetion g{z) angd *1tq eriva-
tives are repliced in (1) by their values as furms]}Qd by (2), s
that the integral J becomes a known functiomofhe infinite st
of coefficients a,, @y, ¢y, . . .; and the problemssduld then becoms,
to determine ay, aq, @, . . . 80 as o ma,k'qJ a minimum. JThe
validity of such a process would of coufse need a careful exam-
ination; but Rayleigh's proposal V{-’:&S. to obtain an aepproximaelt:
solution by truncating the sories (2P 50 as to retain only a finitc
number of cocllicients a,, 4y, .3, 0,3 thon substituting the frun-
cated series in (1), J is obtdmed as a function of g, 4, s, . . ., @,
and the values of a,, a,,, .\ &, can be determined from the con-
ditions that J shouk&?\’ & minimum, namely

i I o7 or
.370*0 G =0 e =

#

A
Thus the approximate value of y(z) is determined,
Thg~same principle can be applied when J is a multlple in-
tegra:l daken over a domain of any number of independent vari-

&ble‘s §

* In finding the correction for the open end of an organ-pipo, Phil. Trans.
161 (1870}, p. 7.

T Many cxamples are to be found in Rayleigh's Theory of Sound, e.g. § 88,
88, 90, 91, 182, 209, 210, 265; also Phl Mag 47 (1899}, p. 856,

7. fir Math, 135 (1008), p. 1.

§CE. N Kryloft, Les méthodes de solution approchée des problémes de la physiqua
mathimatigue {Paris, Gauthier-Villars, 1931). &. Temple and W, {. Bickley,
Rayleigh's Principle and its Applications fo Engineering (London, Oxford T.
Press, 1933}, 1L M. James, ** Some applications of the Rayleigh-Ritz method
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‘185. Application to the Determination of Eigenvalues.—As
an illustration of the Rayleigh-Ritz method, we shall solve the
following problem.

The diferential equation

&y
@‘I—?ly:() (1)

(where X is independent of #) admits a solution which vanishes{\
both when # = 1 and when @ = —1, only if A has one of a &g
tain set of special values* These values of A are called. groper
values, or characterisiic values, or autovalies, or mgenm{ués We
shall now show how they may b calculated numericilly

The differential equation (1) ariscs in the CQIQ&ELIS of Varia-
tions as the condition that the integral

—f ! dZ) R Aﬁe}‘}” @)

should have a stationary value.
Let us take, as an appronmaflon to y, the polynomial

= ) + 92), (3)

which satisfies the mﬁdltlon of vanishing when 2 =1 and when
x=—1, and w’h{\&h ‘contains two undetermined coefficients @q

and @, Suhstl’cutmu from {3) in (2), Wwe have

J :j\"[{z(% — age — dayz?P — A1 — 22)%a, + a@t))dz.

N
T\mung the mtegration, this gives

AN : 59 2
g 8aﬂ_+16a0a1+88a1 . A(l(i_aa_+___fzpﬁ+_3_15_)‘

N\ /

\ 3

to the theory of the siructure of mattor 7', Bull. Amer. WUath. Soc. 47 (19‘%1)}‘:];.
868, Many other referenecs are given by H. Bateman on pp. 01-94 of Bulleéin Ko.
92 of the Nutional Besearch Council (W ashington, 1933).

7% dx® 9,"2 &

* Actually the valucs of ) in question are Z i , the cotrespunding
; but we do nob assume this

. e i
golutions y(x) being cos o sin 7%, 0O% —57

knowledge in the test.
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The conditions that J should have a stationary value, namely
@ :(Jand?—J:O,are
iy dity

N\
Lilimirating the ratio ¢ : ag, we have A2 — 281 |- 63 = 0, S -
A=144++/133 O
= 2467437 or 25-532,563. N\

These are the approximations to the eigem-’ahlgg'\'fﬁrnished by

the Rayleigh-Ritz method when the approximation is made by a

polynomial of the form (3). The correct yaldes of the first and

third * eigenvalues of the differential cquétion (1) are actually
A= 2467,401 and Q5¥92:207,

Thus the Rayleigh-Ritz mctlmd“ with the cheice (3) for the
unknown function, gives ang “axcellent approximation to {he
lowest eigenvalue {correct to 5 d significant figures) and a very
rongh approximation to fh(‘ third eigenvalue. If we had chosen
mnstead of {3) a pol mial of higher degres, we could, of course,
have obtained betﬁ approximations to the lowest eigenvalues
and &lgo rough\apprommatwns to higher eigenvalues.

* The approxithation (3}, since it contains only even powers of x, yields only

elgenvalue&,éf /08d order.

[Oﬁp’\ég o_f the Computntion Sheets facing puges 270 and 278 may be

ubtameri darect from the Publishers in quuntities of not less tkzm one dozen,

,..\as the price of 2s. Bd. per duzen sefs, Special terms will be quoted for orders
\\ of one thousand and upwards. 1
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Exampla.
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N

¢\J
CHAPTER I O
« \/
A\

_ 3 2 . 2

@, Bao-3B, e-2Putly, PELANIE
44 Gw Aw \\ Gur ©
) \4 + consh

1 1 \\

anl IV 2
) APL”)_( 1) a{n+1) .. M(ﬂ;}}%‘

N\

P N 7 i 7
(B AP cosnz= (z sin o . o (mc + % +?§)=

2
‘:s:‘

Sufp— D (x—2+ ].t‘ikq@&- 13+ 5e+ L

6. AN\

— R 3 bag 1

o-7’7(5?37,44)%5~ )

0-7310;2,3& .

414293562374,

875311046,087.

((25] = 0-208459, f1-75)=0:227977,
{(@) 0-433178,483028,782.

[0 0-433265,874297,833,

L 3

[

—

[l

®

8.
X

9.648611,465336,24,
0-861232,11.

Caarres 1T

o, By=—(n+ Byfath?: fio, b )= {ab+ be ea)fa?b® 2
Aa, bye,d)=— (uhe + abd + aed + bed) jfﬂbzczdz.

H3)— 18, f14)=2548.

fa) o8 40 (B o

681474,

130328,
F9)=810 1 f(6:5)=B16:875.

) sty5. (7)F+e®
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Page. Example.

Al

(is)

83

£ 4

8 6\§

sﬁl‘«
)98
29

112

115
118
120
123

Cearrer 11T

1 0-433702,569524,648,
2. T6T1672,8960.
3. 0-133265,874207,832,
4. 3-328LTRE
Crarrer TV
. &N\
L 2-60206G0,0. 2-60%455,1, \
2:603144,4. 2-GO8H2E, 1. A
2-604226,1. 2:600594,4. K\
2-605505, 1. 2-6106G60,2, O
2-606381 4. 2:611723,3. PAY
3 838%. ON
4 (@) 88294, (D) 84640, R4
6. h=886, p=24-51. A
7. p=14-23, §=100"36. \\\
8  1:213411,6. NV
9. lm) 0-003333.332383. () plo68311,282v¢C,
10, — 0001978867, ,\’j;
1. — 0001986 W
13, 5470524 147859 911
“ ‘\‘
“@-HAL"J‘FR Y
1,
3.
5.
¢ s\sl
“‘,\“' Caavmen VI
S0 067230,
8. 0-25865.
2. 40644,
2. 067239,
4801,
2. 0-120614,83.
2. 4-880806.
3, -5 -3, -u
4 -6, —4, —2
2. 241732471, 3-936, - 1.288
2, 5994,
2. 31415026
L 0198601
2. 0-h3BE.
2 x=1-893,
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Ezample.
Miscellaneous Egomples—

L w=1-5129.

2. (o) =846, (B8)2=1-10967864.

3. 4546

4, 1-922884,15.

5. 9-886.

7. w=158.

8  {o)—1-95, 1-70, 0-76.

(8) — 2-935, 046, 1-474. RA
9.  —18274 \
10.  1-381966, 3618034, : L\
11 »=T7° 12" 28" : o
% \/
| PR
Cuaprer VI ¢
A

3. 0.00452,49175. \{\f

3. 1,728,114,577,800. \

4, 0-182321,56. D

2, 0.0102512 N

9. 0.7853996 (Weddle). ii)w’

Miscelluneous E-ra-mpla}é? ’
N
4 o0.06er242 (AN
5. 2,082,128,761, N\
O
g\~'\\3GHmER yIil

2. a=I2975 0=508

3. BED0E

1. &= 508

e ’(/t’ﬂ —=17"804, o= 294

Miscsllaneons Buoamples—

n— 30-838, o =262
a=62 502 in, 0= 2-35.

CaapTEr TX
2= 0-8907, y=2 001G
§=33-351+ 0:522T

p=13-1, y=102, &= 97.5, u= 200, ¥= 187
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Alel’s integral equation, 376
Adams’ method of solving diffcrential
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Algelraic equations, 78
Adteruants, 880
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Arvithmetic mean of absolute devia-
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postulate of, 215,
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151
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{ } arithmetiec mean, 206 -
,, interpolaiion (ormula, 88, 47
Binomial Theorcm, 15
Bronwin’s formula for integration, 159
Brouncker’s series, 268
Brownian motion, 208
Bumside’s formula for double integrals,
375

Canchy’s formuls for trigonometric

interpolation, 282

. 383

Central differences, 55
Central-Gifference formula for numericd] )
integration, 146 A bt
Ch{:byshef’s formulue for intsgiation,
. 158 +40)
Coellicient of correlation, 828, 36
Coefficients, Fourier, 262\
probable error of,
750\ 280
Coin, frcquenoy\di}lributicn of tosses
of, 176 .8
Cloincident Tobts of an equation, 117
Complex T66ts of an equation, 1138
Compound devistion, modulus of pre-
eision of, 176

ER LR

. .aniditiou, squations of, 209
NNConjunctive probability, 317

Clonservation, thearems of, 307
Coustituent tides, 843
Contingeney methods, 338
Correlation, 317-342
as a test far periodicity,
346
coefficient, 529, 335
's ratic, 336
Cotes’ assumption, 322
(tubic, numerical solation of, 124

a2

3

Dandelin’s method of solving equa-
tions, 108

Dats, smoothing of; 28b

Derivatives of a funetion, 62

of a function in terms of
central differences, 64

of & fonction in terms of
divided differences, 65

Determinants, 71
Deviation, 168
Differonce tables, 2
Differences, for funetions of two argu-
ments, 371
in terms of derivatives, 364

n
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Differentiation, generalised, 376
Direot measurements of a sin rrle quan-
tity, 220
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Dauble integrals, computation of, 574
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Encke roots, 107
Equal cocﬂ‘icients, methed of, 2286
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238
. of vondition, 208
1 . redustion Lo
linear form, 214
v simultaucous, 88, 90 &3
Error ¥ometion, 179 N
., mean, 188, 184 o3

y  Tnean, of a dcfmmndtwu 4243
v of mean square, 183,
s probable, 184 &
“ " of FO'{H‘J\ coeficients,
Errors, 210

s of obsefvation, effect on fre-

queéney enrves, 200

Tuler- Mur]am\m {formula, 134, 140
Lwrett,s'%qrmula, 40, 4§
Exgﬂ?ﬂ_tldlb :|11te1polu.Lmn by, 369

E&.cﬁriu], differences of, &
™, Htirling's approximation to,
158

False posilion, rule of, 02
Fechner's psvehophy. sical law, 217
Tidelity to data, expression of 3048
Fitting inverse powers, 248

1w uormal frequency curves, 156-

146

Yorcing of nmuwbers, 187
Yourier analysis, 260-2584
Fredholu's integral equation, 381
Frequency distribution, 164
involving  eor-
relation, 810

21 2

TIE CALCULUS OF OBSERVATIONS

Trequency distribution, not normal,
178, 334
. fanction, approximation te,
171
- general law of, 172, 324
TFunetion, 1
v given as series, roots of, 118
' irterpolatory, 20

Galton's quineuns, 167
Gansg’ formulae of iuterpolation, 88, 46
lllL]\
{ \m{], ar
for integ atlon 150
for 111L;‘r1m]<Lt1011 {t1t-
grmmmtnc), 2858
s method nf‘xolu‘Lwn af norma!
oquatlong 234
sy postidats, of  the
meany 215, 217
by Lhebwla  Comdinationds prool
/nof the Method of il T.east
{ VHquares, 224
(Y Theoria Aotus ool of ile
Y normal law, 218
“Wauss and Beidel’s snhlug [rocess, 255
Genre ol cntive lunetions, 1149
Graduation, 285

ER 11 13 12

ERl 2t

LR LR

arithmelic

" Aldthken’s development of
Whithaler's  methd,
308

" formula, Higham's, 289

Rhodes's, 316
Bheppard’s, 297, 300
Spemeer’s, 200
. »o Whiktaker's, 504
»» Woolhonuse's, 286
Graclle’s methed of aolving r‘quatlonc
106
Gregory’s formula of integration, 113
Chregor y-\Te“ tou formula, 10
1 . generalised
B0 two arguments,
ava

11 ER
12 ”

1 3]

Hardy's formula for integration, 151

Hermite's formula for tigonometric
interpoelation, 285
. functions, 174
Hilberl's integral equation, 381
Horner’s wmothod, 130
" . and divided diller.
ences, 104

Tncomplete data for normul curve, 196
' Gamma Funetion, 377



GENERAL INDEX

Indlireet observations, Gauss’ Theoria
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Tufinite series, roots of, 118

Tutegral equations, 376

Integrals, double, computation of, 374

Integration, numerieal, 132

Interlaced parabolas, graduation for-
mula, 300

Interpolation by exponcntiala, 368

by sine series, 263

inverse, 60

trigonometrie, 263

trigonometrie, for un-
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Tuterpalation formula :
for functions of two arguments, 371
for quinquennial surms, 57
Gregory-Newton, 10, 20

backward, 365
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Lagrange's, 28
» remainder term in, 32
Laplace-Everett, 40, 48
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Newton-Bessel, 30, 47
Newton-Giauss, 36, 46
" hackward, 37
Newton-Stirling. 38, 43, 46
Interpolatory functions, 20
Inverse interpolation, 60
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Mayer's method, 258
Mean ahsolute deviation, 184
.. conlingency, 328
ervor, 183, 184
" ,  of a determination, 243
+  of chservations, weight of, 222
Means, allowance for, in  Fourier
analysis, 279
connceted with normal dis-
tributions, 182
Median, 188
,+  probable error of, 187 \.
Method of eqoal cocfficients, 2353
of Least Squares, 209-269 3
altgrnatives
£\\Mo, 258
Minimmm approximabioe wethod, 259
Modolus, 82 \
of prepisil\&j\,’ 175, 178
n ¥ accuracy of deater-
\® mination, 199
Moments{chmprtation by summation,
191,
Meltipte normal eorrelation, 340
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'N‘a{\'ton’s formula for unequal intervels,

for unequal intervals,
gencralised to two
arguments, 371

Wewton-Bessel interpolation formula,
39, 47

Newton-Cotes formulae of infegration,
152

Newton-Gauas
36, 46

Newton-Gauss interpolation formula,
backward, 37

Neswbon-Gregory interpolation formula,
10, 26

Kewton-Gregory interpolation formula,
hackward, 365

Nawton-Raphson methed, 34, 90

Kewton -Stirling interpolation formula,
38, 48, 46

Nomography, 128

Normflr cnlmgre witl incomplete data, 196

equations, 211, 224

solution of, 231,
934, 236, 239

frequency distributions, 16¢-
208

2t

.interpola{ion formula,
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Normal law, Ganss’ heoric Motus
proof of, 218

non-universality of, 177

:: ’: ol frequency for two
variablos, 321
» »of frequency for two

variables, determina-
tion of constants, 824
Nueleus of an integral equation, 376

Operators, symbolic, 4

Parabolio rale fov inlegration, 1586
Parabolic-cylinder functions, 174
Parameters connected with a normal
distribution, 183, 186
Period, adjustment to, in a. Fourier
analysis, 278
Periodicities, scarel for, 843-362
Periodieity, correlation as a test for,
345
Periodogram, 848
" equation of, 348
1 Hehuster's, 361
Peters’ formulae for probablo error of
arithmetic mean, 204

Pivotal element, 71 R
Poisson’s integral cqnations, 377 (4™

Polynomial, differences of, 5 N
Polynomials of Bernoulli, 141} \
Position, Rule of Ialse, 89
Postulute of the arithmet{c’mea,n, 213,

217 O
Powers, soms of, 1 Fa294
Precision, measure ofb 245

5 modudushof, 175, 178

Probability; JCofljunctive, 517
Probable edrob, 184
s determination of, from

a2 Y7
Ve X

O residuala, 204
';\\" ;. of the ariihmelic mean,

A\ 196, 206
e, » ol Fourier cosfcients,
280
. » of the median, 107
2z 5 of standard deviation

© und modulus of pre-
eigion, 201
" value of constant differences
of data, 207
Prony's method of interpolation Ly
exponontials, 389

Quadratic, nomogram for, 128
. form, reduction of, 235
5 mean deviation, 183

THE CALCULUS OF OBSERVATIONS

Quadratic mean ervor of o delermin.
liou, 245
Quartile, 184
»»  Drobable error of, 203
Quineunx, Glalton's, 167

Repeated roots of an cquation, 117

Reproductive property of normal la W,
175

Residuals, 234

. determnination of ]}mb}l_nlu‘-
erver from, 2044
s sum of squares, 246N

Root-mean-square continpehes’, 514

Root- squaring  method™ of  solvir.
equations, 106 ™4

Root - squaring Zmothdl  of solvivye
equations, goi{lf»at‘ed with Bernaonllis
methiod, 3

Roots, squiaps,” 79

Rullini-Horner method, 100
1252Y . 'e and  divided

e differences, 104

SBnle of False Position, 92

Beliuster’s periodogran, 348, 361
Beculsr change, 1 Fourier analysis,
279
Seidel's solving process, 255
Heminvariants, 171
Beries, formula for rout of an egnation,
120
s Fourler, 283
3 Toois of, 118
»»  Bummation of slowly-conver
gent, 568
Sheppard’s eorrections, 194
. graduation formulae, 291
Slovelton's formula for integration,
151
Bimpson’s formuls, 156, 157
i 1 double, 875
Simultancous equstions, 88, 90
Skew irequency distribations, 178
Slowly-convergent series, summalion
of, 868
Smoothing of data, 285
Binoothness, expression of, 5035
Solving provess of Gauss and Seidel,
255
Bpencer's graduation formula, 290
Square roots, 70
Htandard deviation, 1233
aceuracy of deter.
mination of, 18
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Standard deviation for attributes faken
singly, 327

of sum, ete., of tawn
meazures, 328

Stirling’s approximation to the fac-
torial, 1538

interpolation foxmula, 38,43,
46

method  for  slowly-conver-
went series 968

Subtabalation, 53

Sum of squares of residnals, 246

Bunimation, 181

by w's, 287, 288

by parts, 54

formulae of graduation, 288

wuerical, 182, 136, 149

of slowly-convergent series,
308

Symmetric laryuentre, 249
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Theorin Motus, Causs’, 215, 224

Threc - eiglhilhs rule for inlegration,
157

Transcendental equations, 73

Transformations preliminary to inboer-
polation, B0

Trapeznidal rule for Integration,

Trigonometric fpterpolation, 263

Trisection method of solving cub}c,*
124
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Twelve-ordinate scheme for Fowrier
analysis, 267

Twenty-fonr  ordinate
Fourier analysis, 273

scheme  for

Uneqgual intervals, trigonometrie inter-
polation for, 282

Tnknowns connected by rigorous equa

l tians, 252

| ‘Weker-Tachner psychophysical law, 211
| Weddle's formula for integration, 151
1 Woight of a linear fnnction, 222, 220

| ,, of a linear function of the un- o L 4

‘ knowns, 242 P\
., ol an oheervation, 230, 2./
225, 228 AN

of tha unknowns, 2894
Ja lor root ofa serics
120 \f:\
graduatin’miethod, 303
nomggean for quadratic,
198
solupions of integral equac
M\ Aions, 877
Weolhoused” formula for integration,

Wl’ﬁtta.ker’s formn

n
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oY formula of graduaiion,
N agg, 289
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Fero, differences of, 8
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